Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(36): 32928-32936, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31416312

RESUMO

Intensive research of hybrid metal-halide perovskite materials for use as photoactive materials has resulted in an unmatched increase in the power conversion efficiency of perovskite photovoltaics (PVs) over the last couple of years. Now that lab-fabricated perovskite devices rival the efficiency of silicon PVs, the next challenge of scalable mass manufacturing of large perovskite PV panels remains to be solved. For that purpose, it is still unclear which manufacturing method will provide the lowest processing cost and highest quality solar cells. Vapor deposition has been proven to work well for perovskites as a controllable and repeatable thin-film deposition technique but with processing speeds currently too slow to adequately lower the production costs. Addressing this challenge, in the present work, we demonstrate a high-speed vapor transport processing technique in a custom-built reactor that produces high-quality perovskite films with unprecedented deposition speed exceeding 1 nm/s, over 10× faster than previous vapor deposition demonstrations. We show that the semiconducting perovskite films produced with this method have excellent crystallinity and optoelectronic properties with 10 ns charge carrier lifetime, enabling us to fabricate the first photovoltaic devices made by perovskite vapor transport deposition. Our experiments are guided by computational fluid dynamics simulations that also predict that this technique could lead to deposition rates on the order of micrometers per second. This, in turn, could enable cost-effective scalable manufacturing of the perovskite-based solar technologies.

2.
RSC Adv ; 9(64): 37415-37423, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-35542303

RESUMO

The demonstration of photovoltaic devices with high power conversion efficiencies using low cost perovskite materials hints at the possibility of dramatically lowering the cost of solar energy. Key to further exploiting the potential of these materials is developing rapid processing techniques that can be used to deliver lower cost high throughput manufacture. This work details the development of low viscosity rapid drying perovskite formulations designed to give high quality solar films when slot-die coated on flexible roll-to-roll compatible substrates. A single step slot-die compatible perovskite ink based on an acetonitrile/methylamine solvent system utilizing a chloride additive is developed, resulting in large area perovskite films from slot-die coating under ambient conditions. The drying conditions for the perovskite film are optimized and fast (<10 min), low temperature (<120 °C) drying of slot-die coated films on flexible substrates are demonstrated and result in high performance devices.

3.
Science ; 360(6391): 915-918, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29798884

RESUMO

Biomolecular monitoring in the gastrointestinal tract could offer rapid, precise disease detection and management but is impeded by access to the remote and complex environment. Here, we present an ingestible micro-bio-electronic device (IMBED) for in situ biomolecular detection based on environmentally resilient biosensor bacteria and miniaturized luminescence readout electronics that wirelessly communicate with an external device. As a proof of concept, we engineer heme-sensitive probiotic biosensors and demonstrate accurate diagnosis of gastrointestinal bleeding in swine. Additionally, we integrate alternative biosensors to demonstrate modularity and extensibility of the detection platform. IMBEDs enable new opportunities for gastrointestinal biomarker discovery and could transform the management and diagnosis of gastrointestinal disease.


Assuntos
Técnicas Biossensoriais/instrumentação , Gastroenteropatias/diagnóstico , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiopatologia , Monitorização Fisiológica/instrumentação , Probióticos , Animais , Equipamentos e Provisões Elétricas , Gastroenteropatias/microbiologia , Hemorragia Gastrointestinal/diagnóstico , Heme/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA