Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Microencapsul ; 41(4): 255-268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647544

RESUMO

The aim is to investigate the possible pulmonary protective effect of vanillic acid (VA) in liposome-TPGS nanoparticles, to overcome VA's poor bioavailability. VA was successfully extracted. Liposomes were prepared using thin film hydration. Central composite design was adopted for optimisation of liposomes to get the maximum entrapment efficiency (EE%) and the minimum mean diameter, where the liposomes were further modified with TPGS, and tested for PDI, zeta-potential, and in-vitro drug release. In-vivo study on mice with LPS-acute pulmonary toxicity was tested. TPGS-modified VA-liposomes showed EE% of 69.35 ± 1.23%, PS of 201.7 ± 3.23 nm, PDI of 0.19 ± 0.02, and zeta-potential of -32.2 ± 0.32 mv. A sustained drug release of the TPGS-modified VA-liposomes was observed compared to standard VA, and a pulmonary-protective effect through decreasing miR-217 expression with subsequent anti-inflammatory effect through suppression of MAPK and PI3K/NF-κB pathways was also demonstrated in the current study. TPGS-modified VA-liposomes showed an enhanced bioavailability and a sustained drug release with promising pulmonary protective effects against acute pulmonary injury diseases.


Assuntos
Lipossomos , MicroRNAs , NF-kappa B , Ácido Vanílico , Vitamina E , Animais , NF-kappa B/metabolismo , Ácido Vanílico/farmacologia , Ácido Vanílico/análogos & derivados , Vitamina E/química , Vitamina E/farmacologia , Vitamina E/análogos & derivados , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Pulmão/efeitos dos fármacos
2.
Sci Rep ; 14(1): 2073, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267567

RESUMO

Ferulic acid (FA) has powerful antioxidant and antitumor activities, but it has low bioavailability owing to its poor water solubility. Our aim is to formulate polymeric mixed micelles loaded with FA to overcome its poor solubility and investigate its potential anticancer activity via miRNA-221/TP53INP1 axis-mediated autophagy in colon cancer. A D-optimal design with three factors was used for the optimization of polymeric mixed micelles by studying the effects of each of total Pluronics mixture (mg), Pluronic P123 percentage (%w/w), and drug amount (mg) on both entrapment efficiency (EE%) and particle size. The anticancer activity of FA and Tocopheryl polyethylene glycol 1000 succinate (TPGS) mixed micelles formula (O2) was assessed by MTT and flow cytometry. O2 showed an EE% of 99.89%, a particle size of 13.86 nm, and a zeta potential of - 6.02 mv. In-vitro drug release studies showed a notable increase in the release rate of FA from O2, as compared to the free FA. The (IC50) values for FA from O2 and free FA were calculated against different cell lines showing a prominent IC50 against Caco-2 (17.1 µg/ml, 191 µg/ml respectively). Flow cytometry showed that FA caused cell cycle arrest at the G2/M phase in Caco-2. RT-PCR showed that O2 significantly increased the mRNA expression level of Bax and CASP-3 (4.72 ± 0.17, 3.67 ± 0.14), respectively when compared to free FA (2.59 ± 0.13, 2.14 ± 0.15), while miRNA 221 levels were decreased by the treatment with O2 (0.58 ± 0.02) when compared to free FA treatment (0.79 ± 0.03). The gene expression of TP53INP1 was increased by the treatment with O2 compared to FA at P < 0.0001. FA-loaded TPGS mixed micelles showed promising results for enhancing the anticancer effect of FA against colorectal cancer, probably due to its enhanced solubility. Thus, FA-loaded TPGS mixed micelles could be a potential therapeutic agent for colorectal cancer by targeting miRNA-221/TP53INP1 axis-mediated autophagy.


Assuntos
Neoplasias do Colo , Ácidos Cumáricos , MicroRNAs , Humanos , Micelas , Células CACO-2 , Polímeros , MicroRNAs/genética , Proteínas de Transporte , Proteínas de Choque Térmico
3.
AAPS PharmSciTech ; 24(6): 169, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552427

RESUMO

The aim of the current study is to explore the potential of artificial intelligence (AI) when integrated with Quality by Design (QbD) approach in the formulation of a poorly water-soluble drug, for its potential use in carcinoma. Silymarin is used as a model drug for its potential effectiveness in liver cancer. A detailed QbD approach was applied. The effect of the critical process parameters was studied on each of the particle size, size distribution, and entrapment efficiency. Response surface designs were applied in the screening and optimization of lecithin/chitosan nanoparticles, to obtain an optimized formula. The release rate was tested, where artificial neural network models were used to predict the % release of the drug from the optimized formula at different time intervals. The optimized formula was tested for its cytotoxicity. A design space was established, with an optimized formula having a molar ratio of 18.33:1 lecithin:chitosan and 38.35 mg silymarin. This resulted in nanoparticles with a size of 161 nm, a polydispersity index of 0.2, and an entrapment efficiency of 97%. The optimized formula showed a zeta potential of +38 mV, with well-developed spherical particles. AI successfully showed high prediction ability of the drug's release rate. The optimized formula showed an enhancement in the cytotoxic effect of silymarin with a decreased IC50 compared to standard silymarin. Lecithin/chitosan nanoparticles were successfully formulated, with deep process and product understanding. Several tools were used as AI which could shift pharmaceutical formulations from experience-dependent studies to data-driven methodologies in the future.


Assuntos
Quitosana , Nanopartículas , Silimarina , Lecitinas , Água , Inteligência Artificial , Tamanho da Partícula , Portadores de Fármacos , Liberação Controlada de Fármacos
4.
Drug Deliv Transl Res ; 13(9): 2315-2339, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37017879

RESUMO

Vanillic acid (VA) is a phenolic compound with potential antioxidant activity, which improves ischemia-induced myocardial degeneration, by reducing oxidative stress; however, it suffers poor bioavailability owing to its poor solubility. VA-loaded pharmacosomes were optimized using a central composite design, where the effect of phosphatidylcholine:VA molar ratio and the precursor concentration were studied. An optimized formulation (O1) was prepared and tested for the release rate of VA, in vivo bioavailability, and cardioprotective potential on myocardial infarction-induced rats. The optimized formulation showed a particle size of 229.7 nm, polydispersity index of 0.29, and zeta potential of - 30 mV. O1 showed a sustained drug release for 48 h. The HPLC-UV method was developed for the determination of VA in plasma samples using protein precipitation. The optimized formulation showed a great improvement in the bioavailability as compared to VA. The residence time of the optimized formula was 3 times longer than VA. The optimized formulation showed a more potent cardioprotective effect as compared to VA, via inhibition of the MAPK pathway with subsequent inhibition of PI3k/NF-κB signaling, in addition to its antioxidant effect. The optimized formulation showed normalization of many oxidative stress and inflammatory biomarkers. Thus, a VA-loaded pharmacosome formulation with promising bioavailability and cardioprotective activity potential was prepared.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Ratos , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Liberação Controlada de Fármacos , Antioxidantes/farmacologia , Tamanho da Partícula , Portadores de Fármacos , Administração Oral
5.
Pharm Dev Technol ; 26(10): 1035-1050, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34514957

RESUMO

The current work aims to utilize a quality by design (QbD) approach to develop and optimize nanovesicular carriers of a hydrophobic drug. Rosuvastatin calcium was used as a model drug, which suffers poor bioavailability. Several tools were used in the risk assessment study as Ishikawa diagrams. The critical process parameters (CPP) were found to be the particle size, polydispersity index, zeta potential, and entrapment efficiency. A factorial design was used in risk analysis, which was complemented with an artificial neural network (ANN); to assure its accuracy. A design space was established, with an optimized nanostructured lipid carrier formula containing 3.2% total lipid content, 0.139% surfactant, and 0.1197 mg % drug. The optimized formula showed a sustained drug release up to 72 h. It successfully lowered each of the total cholesterol, low-density lipoprotein, and triglycerides and elevated the high-density lipoprotein levels, as compared to the standard drug. Thus, the concurrent use of the factorial design with ANN using the QbD approach permitted the exploration of the experimental regions for a successful nanovesicular carrier formulation and could be used as a reference for many nanostructured drug delivery studies during their pharmaceutical development and product manufacturing.


Assuntos
Portadores de Fármacos , Lipídeos , Liberação Controlada de Fármacos , Redes Neurais de Computação , Tamanho da Partícula
6.
Drug Dev Ind Pharm ; 45(11): 1777-1787, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31418598

RESUMO

Development of extended release oral formulations of dexketoprofen trometamol (DT), a rapidly eliminated drug with high solubility, poses a great challenge especially when a portion of the dose is to be absorbed from the colon. In this study, site-specific release-retardant mini-matrix tablets (SSRRMTs) were developed and functionally coated with pH-responsive materials to achieve a site-specific delivery of DT at the duodenojejunal (DSRRMT) and ileocecal (ISRRMT) regions. Stomach-specific coated mini-tablets (SSCMTs) were manufactured for immediate release of about 16% of the daily dose of DT in the stomach. The SSCMT, DSRRMT, and ISRRMT were combined into a solid dosage form (C-SSRRMT tablets or capsules) to achieve the required linear release profile for once daily administration of DT. The SSRRMT and C-SSRRMT formulations were evaluated for the physical properties, in vitro-disintegration and in vitro dissolution and proved to be consistent with the pharmacopeial specifications. The in vitro release profiles of both C-SSRRMT tablets and capsules showed a constant release rate of about 6 mg/h and were similar to that of the theoretical target linear release profile. The pharmacokinetic study using human volunteers showed the bioequivalence of a single oral dose of C-SSRRMT capsules compared to three-successive oral doses of the immediate release market tablets with less ups and downs in the drug levels. The C-SSRRMT capsules formulation, may therefore, constitute an advance in the extended oral delivery of DT without the lack of efficacy and the adverse events frequently encountered in multiple daily dosing of the immediate release tablets.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Preparações de Ação Retardada/farmacocinética , Cetoprofeno/análogos & derivados , Trometamina/farmacocinética , Administração Oral , Adulto , Anti-Inflamatórios não Esteroides/administração & dosagem , Área Sob a Curva , Estudos Cross-Over , Preparações de Ação Retardada/administração & dosagem , Esquema de Medicação , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Voluntários Saudáveis , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Cetoprofeno/administração & dosagem , Cetoprofeno/farmacocinética , Masculino , Solubilidade , Comprimidos , Equivalência Terapêutica , Trometamina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA