Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402195, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923324

RESUMO

Mesoscopic photoacoustic imaging (PAI) enables label-free visualization of vascular networks in tissues with high contrast and resolution. Segmenting these networks from 3D PAI data and interpreting their physiological and pathological significance is crucial yet challenging due to the time-consuming and error-prone nature of current methods. Deep learning offers a potential solution; however, supervised analysis frameworks typically require human-annotated ground-truth labels. To address this, an unsupervised image-to-image translation deep learning model is introduced, the Vessel Segmentation Generative Adversarial Network (VAN-GAN). VAN-GAN integrates synthetic blood vessel networks that closely resemble real-life anatomy into its training process and learns to replicate the underlying physics of the PAI system in order to learn how to segment vasculature from 3D photoacoustic images. Applied to a diverse range of in silico, in vitro, and in vivo data, including patient-derived breast cancer xenograft models and 3D clinical angiograms, VAN-GAN demonstrates its capability to facilitate accurate and unbiased segmentation of 3D vascular networks. By leveraging synthetic data, VAN-GAN reduces the reliance on manual labeling, thus lowering the barrier to entry for high-quality blood vessel segmentation (F1 score: VAN-GAN vs. U-Net = 0.84 vs. 0.87) and enhancing preclinical and clinical research into vascular structure and function.

2.
Br J Cancer ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902534

RESUMO

BACKGROUND/OBJECTIVES: Pseudo-vascular network formation in vitro is considered a key characteristic of vasculogenic mimicry. While many cancer cell lines form pseudo-vascular networks, little is known about the spatiotemporal dynamics of these formations. METHODS: Here, we present a framework for monitoring and characterising the dynamic formation and dissolution of pseudo-vascular networks in vitro. The framework combines time-resolved optical microscopy with open-source image analysis for network feature extraction and statistical modelling. The framework is demonstrated by comparing diverse cancer cell lines associated with vasculogenic mimicry, then in detecting response to drug compounds proposed to affect formation of vasculogenic mimics. Dynamic datasets collected were analysed morphometrically and a descriptive statistical analysis model was developed in order to measure stability and dissimilarity characteristics of the pseudo-vascular networks formed. RESULTS: Melanoma cells formed the most stable pseudo-vascular networks and were selected to evaluate the response of their pseudo-vascular networks to treatment with axitinib, brucine and tivantinib. Tivantinib has been found to inhibit the formation of the pseudo-vascular networks more effectively, even in dose an order of magnitude less than the two other agents. CONCLUSIONS: Our framework is shown to enable quantitative analysis of both the capacity for network formation, linked vasculogenic mimicry, as well as dynamic responses to treatment.

3.
Int J Numer Method Biomed Eng ; : e3832, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770788

RESUMO

We present a 3D discrete-continuum model to simulate blood pressure in large microvascular tissues in the absence of known capillary network architecture. Our hybrid approach combines a 1D Poiseuille flow description for large, discrete arteriolar and venular networks coupled to a continuum-based Darcy model, point sources of flux, for transport in the capillary bed. We evaluate our hybrid approach using a vascular network imaged from the mouse brain medulla/pons using multi-fluorescence high-resolution episcopic microscopy (MF-HREM). We use the fully-resolved vascular network to predict the hydraulic conductivity of the capillary network and generate a fully-discrete pressure solution to benchmark against. Our results demonstrate that the discrete-continuum methodology is a computationally feasible and effective tool for predicting blood pressure in real-world microvascular tissues when capillary microvessels are poorly defined.

4.
IEEE Trans Med Imaging ; 43(3): 1214-1224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938947

RESUMO

Accurate measurement of optical absorption coefficients from photoacoustic imaging (PAI) data would enable direct mapping of molecular concentrations, providing vital clinical insight. The ill-posed nature of the problem of absorption coefficient recovery has prohibited PAI from achieving this goal in living systems due to the domain gap between simulation and experiment. To bridge this gap, we introduce a collection of experimentally well-characterised imaging phantoms and their digital twins. This first-of-a-kind phantom data set enables supervised training of a U-Net on experimental data for pixel-wise estimation of absorption coefficients. We show that training on simulated data results in artefacts and biases in the estimates, reinforcing the existence of a domain gap between simulation and experiment. Training on experimentally acquired data, however, yielded more accurate and robust estimates of optical absorption coefficients. We compare the results to fluence correction with a Monte Carlo model from reference optical properties of the materials, which yields a quantification error of approximately 20%. Application of the trained U-Nets to a blood flow phantom demonstrated spectral biases when training on simulated data, while application to a mouse model highlighted the ability of both learning-based approaches to recover the depth-dependent loss of signal intensity. We demonstrate that training on experimental phantoms can restore the correlation of signal amplitudes measured in depth. While the absolute quantification error remains high and further improvements are needed, our results highlight the promise of deep learning to advance quantitative PAI.


Assuntos
Técnicas Fotoacústicas , Animais , Camundongos , Imagens de Fantasmas , Técnicas Fotoacústicas/métodos , Diagnóstico por Imagem , Simulação por Computador , Método de Monte Carlo
5.
Photoacoustics ; 31: 100505, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214427

RESUMO

Photoacoustic mesoscopy visualises vascular architecture at high-resolution up to ~3 mm depth. Despite promise in preclinical and clinical imaging studies, with applications in oncology and dermatology, the accuracy and precision of photoacoustic mesoscopy is not well established. Here, we evaluate a commercial photoacoustic mesoscopy system for imaging vascular structures. Typical artefact types are first highlighted and limitations due to non-isotropic illumination and detection are evaluated with respect to rotation, angularity, and depth of the target. Then, using tailored phantoms and mouse models, we investigate system precision, showing coefficients of variation (COV) between repeated scans [short term (1 h): COV= 1.2%; long term (25 days): COV= 9.6%], from target repositioning (without: COV=1.2%, with: COV=4.1%), or from varying in vivo user experience (experienced: COV=15.9%, unexperienced: COV=20.2%). Our findings show robustness of the technique, but also underscore general challenges of limited-view photoacoustic systems in accurately imaging vessel-like structures, thereby guiding users when interpreting biologically-relevant information.

6.
Photoacoustics ; 26: 100357, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35574188

RESUMO

Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo.

7.
Int J Numer Method Biomed Eng ; 36(3): e3315, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32031302

RESUMO

The subtle relationship between vascular network structure and mass transport is vital to predict and improve the efficacy of anticancer treatments. Here, mathematical homogenisation is used to derive a new multiscale continuum model of blood and chemotherapy transport in the vasculature and interstitium of a vascular tumour. This framework enables information at a range of vascular hierarchies to be fed into an effective description on the length scale of the tumour. The model behaviour is explored through a demonstrative case study of a simplified representation of a dorsal skinfold chamber, to examine the role of vascular network architecture in influencing fluid and drug perfusion on the length scale of the chamber. A single parameter, P, is identified that relates tumour-scale fluid perfusion to the permeability and density of the capillary bed. By fixing the topological and physiological properties of the arteriole and venule networks, an optimal value for P is identified, which maximises tumour fluid transport and is thus hypothesised to benefit chemotherapy delivery. We calculate the values for P for eight explicit network structures; in each case, vascular intervention by either decreasing the permeability or increasing the density of the capillary network would increase fluid perfusion through the cancerous tissue. Chemotherapeutic strategies are compared and indicate that single injection is consistently more successful compared with constant perfusion, and the model predicts optimal timing of a second dose. These results highlight the potential of computational modelling to elucidate the link between vascular architecture and fluid, drug distribution in tumours.


Assuntos
Tratamento Farmacológico/métodos , Modelos Teóricos , Simulação por Computador , Humanos , Neoplasias Vasculares
8.
Math Med Biol ; 37(1): 40-57, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30892609

RESUMO

In recent years, biological imaging techniques have advanced significantly and it is now possible to digitally reconstruct microvascular network structures in detail, identifying the smallest capillaries at sub-micron resolution and generating large 3D structural data sets of size >106 vessel segments. However, this relies on ex vivo imaging; corresponding in vivo measures of microvascular structure and flow are limited to larger branching vessels and are not achievable in three dimensions for the smallest vessels. This suggests the use of computational modelling to combine in vivo measures of branching vessel architecture and flows with ex vivo data on complete microvascular structures to predict effective flow and pressures distributions. In this paper, a hybrid discrete-continuum model to predict microcirculatory blood flow based on structural information is developed and compared with existing models for flow and pressure in individual vessels. A continuum-based Darcy model for transport in the capillary bed is coupled via point sources of flux to flows in individual arteriolar vessels, which are described explicitly using Poiseuille's law. The venular drainage is represented as a spatially uniform flow sink. The resulting discrete-continuum framework is parameterized using structural data from the capillary network and compared with a fully discrete flow and pressure solution in three networks derived from observations of the rat mesentery. The discrete-continuum approach is feasible and effective, providing a promising tool for extracting functional transport properties in situations where vascular branching structures are well defined.


Assuntos
Microcirculação/fisiologia , Modelos Cardiovasculares , Algoritmos , Animais , Pressão Sanguínea/fisiologia , Simulação por Computador , Hemodinâmica/fisiologia , Humanos , Imageamento Tridimensional , Conceitos Matemáticos , Mesentério/irrigação sanguínea , Microvasos/anatomia & histologia , Microvasos/fisiologia , Ratos , Fluxo Sanguíneo Regional/fisiologia , Circulação Esplâncnica/fisiologia
9.
PLoS Comput Biol ; 15(6): e1006751, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31226169

RESUMO

Cancers exhibit spatially heterogeneous, unique vascular architectures across individual samples, cell-lines and patients. This inherently disorganised collection of leaky blood vessels contribute significantly to suboptimal treatment efficacy. Preclinical tools are urgently required which incorporate the inherent variability and heterogeneity of tumours to optimise and engineer anti-cancer therapies. In this study, we present a novel computational framework which incorporates whole, realistic tumours extracted ex vivo to efficiently simulate vascular blood flow and interstitial fluid transport in silico for validation against in vivo biomedical imaging. Our model couples Poiseuille and Darcy descriptions of vascular and interstitial flow, respectively, and incorporates spatially heterogeneous blood vessel lumen and interstitial permeabilities to generate accurate predictions of tumour fluid dynamics. Our platform enables highly-controlled experiments to be performed which provide insight into how tumour vascular heterogeneity contributes to tumour fluid transport. We detail the application of our framework to an orthotopic murine glioma (GL261) and a human colorectal carcinoma (LS147T), and perform sensitivity analysis to gain an understanding of the key biological mechanisms which determine tumour fluid transport. Finally we mimic vascular normalization by modifying parameters, such as vascular and interstitial permeabilities, and show that incorporating realistic vasculatures is key to modelling the contrasting fluid dynamic response between tumour samples. Contrary to literature, we show that reducing tumour interstitial fluid pressure is not essential to increase interstitial perfusion and that therapies should seek to develop an interstitial fluid pressure gradient. We also hypothesise that stabilising vessel diameters and permeabilities are not key responses following vascular normalization and that therapy may alter interstitial hydraulic conductivity. Consequently, we suggest that normalizing the interstitial microenvironment may provide a more effective means to increase interstitial perfusion within tumours.


Assuntos
Transporte Biológico/fisiologia , Modelos Biológicos , Neoplasias , Microambiente Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Biologia Computacional , Simulação por Computador , Líquido Extracelular/metabolismo , Líquido Extracelular/fisiologia , Humanos , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/fisiopatologia
10.
Sci Rep ; 8(1): 1373, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358701

RESUMO

The neurovascular mechanisms underpinning the local regulation of cerebral blood flow (CBF) and oxygen transport remain elusive. In this study we have combined novel in vivo imaging of cortical microvascular and mural cell architecture with mathematical modelling of blood flow and oxygen transport, to provide new insights into CBF regulation that would be inaccessible in a conventional experimental context. Our study indicates that vasoconstriction of smooth muscle actin-covered vessels, rather than pericyte-covered capillaries, induces stable reductions in downstream intravascular capillary and tissue oxygenation. We also propose that seemingly paradoxical observations in the literature around reduced blood velocity in response to arteriolar constrictions might be caused by a propagation of constrictions to upstream penetrating arterioles. We provide support for pericytes acting as signalling conduits for upstream smooth muscle activation, and erythrocyte deformation as a complementary regulatory mechanism. Finally, we caution against the use of blood velocity as a proxy measurement for flow. Our combined imaging-modelling platform complements conventional experimentation allowing cerebrovascular physiology to be probed in unprecedented detail.


Assuntos
Actinas/genética , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Oxigênio/metabolismo , Actinas/metabolismo , Animais , Encéfalo/metabolismo , Hemodinâmica , Camundongos , Camundongos Transgênicos , Microvasos/diagnóstico por imagem , Modelos Teóricos , Optogenética , Pericitos/metabolismo
11.
Nat Biomed Eng ; 2(10): 773-787, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-31015649

RESUMO

Understanding the uptake of a drug by diseased tissue, and the drug's subsequent spatiotemporal distribution, are central factors in the development of effective targeted therapies. However, the interaction between the pathophysiology of diseased tissue and individual therapeutic agents can be complex, and can vary across tissue types and across subjects. Here, we show that the combination of mathematical modelling, high-resolution optical imaging of intact and optically cleared tumour tissue from animal models, and in vivo imaging of vascular perfusion predicts the heterogeneous uptake, by large tissue samples, of specific therapeutic agents, as well as their spatiotemporal distribution. In particular, by using murine models of colorectal cancer and glioma, we report and validate predictions of steady-state blood flow and intravascular and interstitial fluid pressure in tumours, of the spatially heterogeneous uptake of chelated gadolinium by tumours, and of the effect of a vascular disrupting agent on tumour vasculature.


Assuntos
Antineoplásicos/metabolismo , Hidrodinâmica , Modelos Teóricos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Meios de Contraste/química , Meios de Contraste/metabolismo , Difosfatos/metabolismo , Difosfatos/uso terapêutico , Modelos Animais de Doenças , Feminino , Gadolínio/química , Gadolínio/metabolismo , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fluxo Sanguíneo Regional , Estilbenos/metabolismo , Estilbenos/uso terapêutico , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA