Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AIDS ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39405127

RESUMO

OBJECTIVES: Virally-suppressed people with HIV (VS-PWH) show heterogeneity in patterns of cognitive dysfunction. To better understand the relationship between the neuroimmune response and cognition, we used positron emission tomography (PET) to image the translocator protein 18 kDa (TSPO). The study examined HIV-serostatus differences in TSPO as well as associations between regional TSPO and select cognitive processes defined using the Research Domain Criteria (RDoC) framework. DESIGN: Cross-sectional investigation in VS-PWH (n = 25) versus HIV-uninfected individuals (n = 18) of cognitive control and declarative memory, as well as [11C]DPA-713 PET measures of TSPO within cognitive control and declarative memory regions of interest. METHODS: Group differences in [11C]DPA-713 binding (VT) in cognitive control or declarative memory regions were examined using linear mixed models. Tests of associations between factor-derived cognitive system measures and PET measures were performed, controlling for TSPO genotype. RESULTS: There were no group differences in any of the four factor-derived cognitive system measures. VS-PWH had higher log [11C]DPA-713 VT across cognitive control regions(unstandardized beta coefficient reflecting mean difference [B] = 0.23, SE = 0.11, 95% confidence interval [CI] 0.01, 0.45, P = 0.04) and declarative memory regions (B = 0.24, SE = 0.11, 95%CI 0.02, 0.45, P = 0.03). Higher log [11C]DPA-713 VT in cognitive control regions related to poorer cognitive control in each group, and to worse self-reported cognitive performance in VS-PWH. Log [11C]DPA-713 VT in each declarative memory region did not associate with measured declarative memory. CONCLUSIONS: A localized neuroimmune response marked by high TSPO in brain regions that subserve cognitive control may contribute to poorer cognitive control in VS-PWH.

2.
JAMA Netw Open ; 6(10): e2340580, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37902750

RESUMO

Importance: Pilot studies that involved early imaging of the 18 kDa translocator protein (TSPO) using positron emission tomography (PET) indicated high levels of TSPO in the brains of active or former National Football League (NFL) players. If validated further in larger studies, those findings may have implications for athletes involved in collision sport. Objective: To test for higher TSPO that marks brain injury and repair in a relatively large, unique cohort of former NFL players compared with former elite, noncollision sport athletes. Design, Setting, and Participants: This cross-sectional study used carbon 11-labeled N,N-diethyl-2-(4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide positron emission tomography ([11C]DPA-713 PET) data from former NFL players within 12 years of last participation in the NFL and elite noncollision sport athletes from across the US. Participants were enrolled between April 2018 and February 2023. Main outcomes and measures: Regional [11C]DPA-713 total distribution volume from [11C]DPA-713 PET that is a measure of regional brain TSPO; regional brain volumes on magnetic resonance imaging; neuropsychological performance, including attention, executive function, and memory domains. Results: This study included 27 former NFL players and 27 former elite, noncollision sport athletes. Regional TSPO levels were higher in former NFL players compared with former elite, noncollision sport athletes (unstandardized ß coefficient, 1.08; SE, 0.22; 95% CI, 0.65 to 1.52; P < .001). The magnitude of the group difference depended on region, with largest group differences in TSPO in cingulate and frontal cortices as well as hippocampus. Compared with noncollision sport athletes, former NFL players performed worse in learning (mean difference [MD], -0.70; 95% CI, -1.14 to -0.25; P = .003) and memory (MD, -0.77; 95% CI, -1.24 to -0.30; P = .002), with no correlation between total gray matter TSPO and these cognitive domains. Conclusions and relevance: In this cross-sectional study using [11C]DPA-713 PET, higher brain TSPO was found in former NFL players compared with noncollision sport athletes. This finding is consistent with neuroimmune activation even after cessation of NFL play. Future longitudinal [11C]DPA-713 PET and neuropsychological testing promises to inform whether neuroimmune-modulating therapy may be warranted.


Assuntos
Lesões Encefálicas , Futebol Americano , Humanos , Estudos Transversais , Neuroimagem , Receptores de GABA
3.
Eur J Nucl Med Mol Imaging ; 50(12): 3659-3665, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37458759

RESUMO

PURPOSE: Soluble epoxide hydrolase (sEH) is an enzyme that shapes immune signaling through its role in maintaining the homeostasis of polyunsaturated fatty acids and their related byproducts. [18F]FNDP is a radiotracer developed for use with positron emission tomography (PET) to image sEH, which has been applied to imaging sEH in the brains of healthy individuals. Here, we report the test-retest repeatability of [18F]FNDP brain PET binding and [18F]FNDP whole-body dosimetry in healthy individuals. METHODS: Seven healthy adults (4 men, 3 women, ages 40.1 ± 4.6 years) completed [18F]FNDP brain PET on two occasions within a period of 14 days in a test-retest study design. [18F]FNDP regional total distribution volume (VT) values were derived from modeling time-activity data with a metabolite-corrected arterial input function. Test-retest variability, mean absolute deviation, and intraclass correlation coefficient (ICC) were investigated. Six other healthy adults (3 men, 3 women, ages 46.0 ± 7.0 years) underwent [18F]FNDP PET/CT for whole-body dosimetry, which was acquired over 4.5 h, starting immediately after radiotracer administration. Organ-absorbed doses and the effective dose were then estimated. RESULTS: The mean test-retest difference in regional VT (ΔVT) was 0.82 ± 5.17%. The mean absolute difference in regional VT was 4.01 ± 3.33%. The ICC across different brain regions ranged from 0.92 to 0.99. The organs with the greatest radiation-absorbed doses included the gallbladder (0.081 ± 0.024 mSv/MBq), followed by liver (0.077 ± 0.018 mSv/MBq) and kidneys (0.063 ± 0.006 mSv/MBq). The effective dose was 0.020 ± 0.003 mSv/MBq. CONCLUSION: These data support a favorable test-retest repeatability of [18F]FNDP brain PET regional VT. The radiation dose to humans from each [18F]FNDP PET scan is similar to that of other 18F-based PET radiotracers.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Masculino , Adulto , Humanos , Feminino , Tomografia por Emissão de Pósitrons/métodos , Radiometria , Doses de Radiação , Neuroimagem
4.
AIDS ; 37(9): 1419-1424, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37070549

RESUMO

OBJECTIVE: Neuroimmune activation is a putative driver of cognitive impairment in people with HIV (PWH), even in the age of modern antiretroviral therapy. Nevertheless, imaging of the microglial marker, the 18 kDa translocator protein (TSPO), with positron emission tomography (PET) in treated PWH has yielded inconclusive findings. One potential reason for the varied TSPO results is a lack of cell-type specificity of the TSPO target. DESIGN: [ 11 C]CPPC, 5-cyano- N -(4-(4-[ 11 C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl) furan-2-carboxaminde, is a radiotracer for use with PET to image the colony stimulating factor 1 receptor (CSF1R). The CSF1R is expressed on microglia and central nervous system macrophages, with little expression on other cell types. We used [ 11 C]CPPC PET in virally-suppressed- (VS)-PWH and HIV-uninfected individuals to estimate the effect sizes of higher CSF1R in the brains of VS-PWH. METHODS: Sixteen VS-PWH and 15 HIV-uninfected individuals completed [ 11 C]CPPC PET. [ 11 C]CPPC binding (V T ) in nine regions was estimated using a one-tissue compartmental model with a metabolite-corrected arterial input function, and compared between groups. RESULTS: Regional [ 11 C]CPPC V T did not significantly differ between groups after age- and sex- adjustment [unstandardized beta coefficient ( B ) = 1.84, standard error (SE) = 1.18, P  = 0.13]. The effect size was moderate [Cohen's d  = 0.56, 95% confidence interval (CI) -0.16, 1.28), with strongest trend of higher V T in VS-PWH in striatum and parietal cortex (each P  = 0.04; Cohen's d  = 0.71 and 0.72, respectively). CONCLUSIONS: A group difference in [ 11 C]CPPC V T was not observed between VS-PWH and HIV-uninfected individuals in this pilot, although the observed effect sizes suggest the study was underpowered to detect regional group differences in binding.


Assuntos
Encéfalo , Infecções por HIV , Receptor de Fator Estimulador de Colônias de Macrófagos , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Microglia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Imagem Molecular
5.
EJNMMI Res ; 12(1): 64, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175737

RESUMO

PURPOSE: Study of the contribution of microglia to onset and course of several neuropsychiatric conditions is challenged by the fact that these resident immune cells often take on different phenotypes and functions outside the living brain. Imaging microglia with radiotracers developed for use with positron emission tomography (PET) allows researchers to study these cells in their native tissue microenvironment. However, many relevant microglial imaging targets such as the 18 kDa translocator protein are also expressed on non-microglial cells, which can complicate the interpretation of PET findings. 11C-CPPC was developed to image the macrophage colony-stimulating factor 1 receptor, a target that is expressed largely by microglia relative to other cell types in the brain. Our prior work with 11C-CPPC demonstrated its high, specific uptake in brains of rodents and nonhuman primates with neuroinflammation, which supports the current first-in-human evaluation of its pharmacokinetic behavior in the brains of healthy individuals. METHODS: Eight healthy nonsmoker adults completed a 90-min dynamic PET scan that began with bolus injection of 11C-CPPC. Arterial blood sampling was collected in order to generate a metabolite-corrected arterial input function. Tissue time-activity curves (TACs) were generated using regions of interest identified from co-registered magnetic resonance imaging data. One- and two-tissue compartmental models (1TCM and 2TCM) as well as Logan graphical analysis were compared. RESULTS: Cortical and subcortical tissue TACs peaked by 37.5 min post-injection of 11C-CPPC and then declined. The 1TCM was preferred. Total distribution volume (VT) values computed from 1TCM aligned well with those from Logan graphical analysis (t* = 30), with VT values relatively high in thalamus, striatum, and most cortical regions, and with relatively lower VT in hippocampus, total white matter, and cerebellar cortex. CONCLUSION: Our results extend support for the use of 11C-CPPC with PET to study microglia in the human brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA