RESUMO
The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LDs) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. For example, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and the proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Our analyses showed reductions in LD volume, area, and perimeter in aged samples in comparison to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for the mitochondria interacting with LDs. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology with mitochondrial function, metabolism, and bioactivity in aged BAT.
Assuntos
Tecido Adiposo Marrom , Envelhecimento , Gotículas Lipídicas , Mitocôndrias , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/ultraestrutura , Gotículas Lipídicas/metabolismo , Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos/fisiologia , Adipócitos Marrons/metabolismo , Adipócitos Marrons/ultraestrutura , MasculinoRESUMO
Junior faculty mentoring committees have important roles in ensuring that faculty thrive and adjust to their new positions and institutions. Here, we describe the purpose, structure, and benefits of junior faculty mentoring committees, which can be a powerful tool for early-career academic investigators in science, technology, engineering, mathematics, and medical (STEMM) fields. There is a paucity of information about what mentoring committees are, how to use them effectively, what areas they should evaluate, and how they can most successfully help junior faculty progress in their careers. This work offers guidance for both junior faculty mentees and mentoring committee members on how to best structure and utilize mentoring committees to promote junior faculty success. A better understanding of the intricacies of the mentoring committee will allow junior faculty members to self-advocate and will equip committee mentors with tools to ensure that junior faculty are successful in thriving in academia.
Assuntos
Docentes , Tutoria , Mentores , Humanos , Pesquisadores/educaçãoRESUMO
The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.
RESUMO
The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
RESUMO
The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LD) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. Particularly, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Analysis showed reductions in LD volume, area, and perimeter in aged samples compared to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for mitochondria interacting with LD lipids. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology and mitochondrial functionality, metabolism, and bioactivity in aged BAT.
RESUMO
The mitochondrial-rich renal tubule cells are key regulators of blood homeostasis via excretion and reabsorption of metabolic waste. With age, tubules are subject to increasing mitochondrial dysfunction and declining nicotinamide adenine dinucleotide (NAD+) levels, both hampering ATP production efficiency. We tested two mitochondrial interventions in young (6-mo) and aged (26-mo) adult male mice: elamipretide (ELAM), a tetrapeptide in clinical trials that improves mitochondrial structure and function, and nicotinamide mononucleotide (NMN), an NAD+ intermediate and commercially available oral supplement. Kidneys were analyzed from young and aged mice after eight weeks of treatment with ELAM (3 mg/kg/day), NMN (300 mg/kg/day), or from aged mice treated with the two interventions combined (ELAM+NMN). We hypothesized that combining pharmacologic treatments to ameliorate mitochondrial dysfunction and boost NAD+ levels, would more effectively reduce kidney aging than either intervention alone. Unexpectedly, in aged kidneys, NMN increased expression of genetic markers of inflammation (IL-1-beta; and Ccl2) and tubule injury (Kim-1). Metabolomics of endpoint sera showed that NMN-treated aged mice had higher circulating levels of uremic toxins than either aged controls or young NMN-treated mice. ELAM+NMN-treated aged mice accumulated uremic toxins like NMN-only aged mice, but reduced IL-1-beta; and Ccl2 kidney mRNA. This suggests that pre-existing mitochondrial dysfunction in aged kidney underlies susceptibility to inflammatory signaling with NMN supplementation in aged, but not young, mice. These findings demonstrate age and tissue dependent effects on downstream metabolic accumulation from NMN and highlight the need for targeted analysis of aged kidneys to assess the safety of anti-aging supplements in older populations.
RESUMO
Qualifying exams and thesis committees are crucial components of a PhD candidate's journey. However, many candidates have trouble navigating these milestones and knowing what to expect. This article provides advice on meeting the requirements of the qualifying exam, understanding its format and components, choosing effective preparation strategies, retaking the qualifying exam, if necessary, and selecting a thesis committee, all while maintaining one's mental health. This comprehensive guide addresses components of the graduate school process that are often neglected.
Assuntos
Educação de Pós-Graduação , Humanos , Educação de Pós-Graduação/métodos , Dissertações Acadêmicas como Assunto , Avaliação Educacional/métodosRESUMO
Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, it is hypothesized that significant morphological changes in BAT mitochondria and cristae will be present with aging. A quantitative 3D electron microscopy approach is developed to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, the 3D morphology of mitochondrial cristae is investigated in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, an increase is found in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.
Assuntos
Tecido Adiposo Marrom , Membranas Mitocondriais , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , EnvelhecimentoRESUMO
During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.
Assuntos
Imageamento Tridimensional , Membranas Associadas à Mitocôndria , Camundongos , Animais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , DNA Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Mamíferos/genética , Mamíferos/metabolismoRESUMO
Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, we hypothesized that significant morphological changes in BAT mitochondria and cristae would be present with aging. We developed a quantitative three-dimensional (3D) electron microscopy approach to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, we investigated the 3D morphology of mitochondrial cristae in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, we found increases in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.
RESUMO
We are 52 Black scientists. Here, we establish the context of Juneteenth in STEMM and discuss the barriers Black scientists face, the struggles they endure, and the lack of recognition they receive. We review racism's history in science and provide institutional-level solutions to reduce the burdens on Black scientists.
Assuntos
População Negra , HumanosRESUMO
The pathology of aging impacts multiple organ systems, including the kidney and skeletal and cardiac muscles. Long-term treatment with the mitochondrial-targeted peptide elamipretide has previously been shown to improve in vivo mitochondrial function in aged mice, which is associated with increased fatigue resistance and treadmill performance, improved cardiovascular diastolic function, and glomerular architecture of the kidney. However, elamipretide is a short tetrameric peptide that is not orally bioavailable, limiting its routes of administration. This study tested whether twice weekly intermittent injections of elamipretide could recapitulate the same functional improvements as continuous long-term infusion. We found that intermittent treatment with elamipretide for 8 months preserved exercise tolerance and left ventricular mass in mice with modest protection of diastolic function and skeletal muscle force production but did not affect kidney function as previously reported using continuous treatment.
Assuntos
Tolerância ao Exercício , Oligopeptídeos , Feminino , Animais , Camundongos , Mitocôndrias , EnvelhecimentoRESUMO
Accumulation of somatic mutations in the mitochondrial genome (mtDNA) has long been proposed as a possible mechanism of mitochondrial and tissue dysfunction that occurs during aging. A thorough characterization of age-associated mtDNA somatic mutations has been hampered by the limited ability to detect low-frequency mutations. Here, we used Duplex Sequencing on eight tissues of an aged mouse cohort to detect >89,000 independent somatic mtDNA mutations and show significant tissue-specific increases during aging across all tissues examined which did not correlate with mitochondrial content and tissue function. GâA/CâT substitutions, indicative of replication errors and/or cytidine deamination, were the predominant mutation type across all tissues and increased with age, whereas GâT/CâA substitutions, indicative of oxidative damage, were the second most common mutation type, but did not increase with age regardless of tissue. We also show that clonal expansions of mtDNA mutations with age is tissue- and mutation type-dependent. Unexpectedly, mutations associated with oxidative damage rarely formed clones in any tissue and were significantly reduced in the hearts and kidneys of aged mice treated at late age with elamipretide or nicotinamide mononucleotide. Thus, the lack of accumulation of oxidative damage-linked mutations with age suggests a life-long dynamic clearance of either the oxidative lesions or mtDNA genomes harboring oxidative damage.
Assuntos
Envelhecimento , DNA Mitocondrial , Camundongos , Animais , DNA Mitocondrial/genética , Envelhecimento/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Estresse Oxidativo/genética , MutaçãoRESUMO
Purpose: The purpose of this study was to present our hypothesis that aging alters metabolic function in ocular tissues. We tested the hypothesis by measuring metabolism in aged murine tissues alongside retinal responses to light. Methods: Scotopic and photopic electroretinogram (ERG) responses in young (3-6 months) and aged (23-26 months) C57Bl/6J mice were recorded. Metabolic flux in retina and eyecup explants was quantified using U-13C-glucose or U-13C-glutamine with gas chromatography-mass spectrometry (GC-MS), O2 consumption rate (OCR) in a perifusion apparatus, and quantifying adenosine triphosphatase (ATP) with a bioluminescence assay. Results: Scotopic and photopic ERG responses were reduced in aged mice. Glucose metabolism, glutamine metabolism, OCR, and ATP pools in retinal explants were mostly unaffected in aged mice. In eyecups, glutamine usage in the Krebs Cycle decreased while glucose metabolism, OCR, and ATP pools remained stable. Conclusions: Our examination of metabolism showed negligible impact of age on retina and an impairment of glutamine anaplerosis in eyecups. The metabolic stability of these tissues ex vivo suggests age-related metabolic alterations may not be intrinsic. Future experiments should focus on determining whether external factors including nutrient supply, oxygen availability, or structural changes influence ocular metabolism in vivo.
Assuntos
Envelhecimento/fisiologia , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Visão de Cores/fisiologia , Eletrorretinografia , Fusão Flicker/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Glutamina/metabolismo , Luz , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Visão Noturna/fisiologia , Consumo de Oxigênio/fisiologia , Estimulação LuminosaRESUMO
Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in GâA and TâC transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational 'hot-spots' or 'cold-spots'. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.
Assuntos
Envelhecimento/genética , Replicação do DNA , DNA Mitocondrial/genética , Genoma Mitocondrial , Mutação em Linhagem Germinativa , Mitocôndrias/genética , Acúmulo de Mutações , Envelhecimento/metabolismo , Animais , Mapeamento Cromossômico , DNA Polimerase gama/deficiência , DNA Polimerase gama/genética , DNA Mitocondrial/metabolismo , Especiação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Taxa de Mutação , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The effects of two different mitochondrial-targeted drugs, SS-31 and NMN, were tested on Old mouse hearts. After treatment with the drugs, individually or Combined, heart function was examined by echocardiography. SS-31 partially reversed an age-related decline in diastolic function while NMN fully reversed an age-related deficiency in systolic function at a higher workload. Metabolomic analysis revealed that both NMN and the Combined treatment increased nicotinamide and 1-methylnicotinamide levels, indicating greater NAD+ turnover, but only the Combined treatment resulted in significantly greater steady-state NAD(H) levels. A novel magnetic resonance spectroscopy approach was used to assess how metabolite levels responded to changing cardiac workload. PCr/ATP decreased in response to increased workload in Old Control, but not Young, hearts, indicating an age-related decline in energetic capacity. Both drugs were able to normalize the PCr/ATP dynamics. SS-31 and NMN treatment also increased mitochondrial NAD(P)H production under the higher workload, while only NMN increased NAD+ in response to increased work. These measures did not shift in hearts given the Combined treatment, which may be owed to the enhanced NAD(H) levels in the resting state after this treatment. Overall, these results indicate that both drugs are effective at restoring different aspects of mitochondrial and heart health and that combining them results in a synergistic effect that rejuvenates Old hearts and best recapitulates the Young state.
Assuntos
Coração/efeitos dos fármacos , Mononucleotídeo de Nicotinamida/farmacologia , Oligopeptídeos/farmacologia , Fatores Etários , Animais , Coração/diagnóstico por imagem , Coração/fisiologia , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , NAD/metabolismoRESUMO
Diastolic dysfunction is a prominent feature of cardiac aging in both mice and humans. We show here that 8-week treatment of old mice with the mitochondrial targeted peptide SS-31 (elamipretide) can substantially reverse this deficit. SS-31 normalized the increase in proton leak and reduced mitochondrial ROS in cardiomyocytes from old mice, accompanied by reduced protein oxidation and a shift towards a more reduced protein thiol redox state in old hearts. Improved diastolic function was concordant with increased phosphorylation of cMyBP-C Ser282 but was independent of titin isoform shift. Late-life viral expression of mitochondrial-targeted catalase (mCAT) produced similar functional benefits in old mice and SS-31 did not improve cardiac function of old mCAT mice, implicating normalizing mitochondrial oxidative stress as an overlapping mechanism. These results demonstrate that pre-existing cardiac aging phenotypes can be reversed by targeting mitochondrial dysfunction and implicate mitochondrial energetics and redox signaling as therapeutic targets for cardiac aging.
Assuntos
Envelhecimento/efeitos dos fármacos , Cardiopatias/tratamento farmacológico , Mitocôndrias/fisiologia , Oligopeptídeos/administração & dosagem , Estresse Oxidativo , Animais , Metabolismo Energético , Feminino , Cardiopatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , OxirreduçãoRESUMO
Even in healthy aging, cardiac morbidity and mortality increase with age in both mice and humans. These effects include a decline in diastolic function, left ventricular hypertrophy, metabolic substrate shifts, and alterations in the cardiac proteome. Previous work from our laboratory indicated that short-term (10-week) treatment with rapamycin, an mTORC1 inhibitor, improved measures of these age-related changes. In this report, we demonstrate that the rapamycin-dependent improvement of diastolic function is highly persistent, while decreases in both cardiac hypertrophy and passive stiffness are substantially persistent 8 weeks after cessation of an 8-week treatment of rapamycin in both male and female 22- to 24-month-old C57BL/6NIA mice. The proteomic and metabolomic abundance changes that occur after 8 weeks of rapamycin treatment have varying persistence after 8 further weeks without the drug. However, rapamycin did lead to a persistent increase in abundance of electron transport chain (ETC) complex components, most of which belonged to Complex I. Although ETC protein abundance and Complex I activity were each differentially affected in males and females, the ratio of Complex I activity to Complex I protein abundance was equally and persistently reduced after rapamycin treatment in both sexes. Thus, rapamycin treatment in the aged mice persistently improved diastolic function and myocardial stiffness, persistently altered the cardiac proteome in the absence of persistent metabolic changes, and led to persistent alterations in mitochondrial respiratory chain activity. These observations suggest that an optimal translational regimen for rapamycin therapy that promotes enhancement of healthspan may involve intermittent short-term treatments.
Assuntos
Cardiomegalia/tratamento farmacológico , Complexo I de Transporte de Elétrons/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Miocárdio/metabolismo , Proteoma/efeitos dos fármacos , Sirolimo/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Diástole/efeitos dos fármacos , Feminino , Identidade de Gênero , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Espectrometria de Massas em TandemRESUMO
Advanced age portends a poorer prognosis in FSGS. To understand the impact of age on glomerular podocytes and parietal epithelial cells (PECs), experimental FSGS was induced in 3m-old mice (20-year old human age) and 27m-old mice (78-year old human age) by abruptly depleting podocytes with a cytopathic anti-podocyte antibody. Despite similar binding of the disease-inducing antibody, podocyte density was lower in aged FSGS mice compared to young FSGS mice. Activated PEC density was higher in aged versus young FSGS mice, as was the percentage of total activated PECs. Additionally, the percentage of glomeruli containing PECs with evidence of phosphorylated ERK and EMT was higher in aged FSGS mice. Extracellular matrix, measured by collagen IV and silver staining, was higher in aged FSGS mice along Bowman's capsule. However, collagen IV accumulation in the glomerular tufts alone and in glomeruli with both tuft and Bowman's capsule accumulation were similar in young FSGS and aged FSGS mice. Thus, the major difference in collagen IV staining in FSGS was along Bowman's capsule in aged mice. The significant differences in podocytes, PECs and extracellular matrix accumulation between young mice and old mice with FSGS might explain the differences in outcomes in FSGS based on age.
Assuntos
Envelhecimento/patologia , Células Epiteliais/patologia , Glomerulosclerose Segmentar e Focal/patologia , Glomérulos Renais/patologia , Fatores Etários , Envelhecimento/metabolismo , Animais , Cápsula Glomerular/metabolismo , Cápsula Glomerular/patologia , Colágeno/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/metabolismo , Camundongos , Fosforilação , Podócitos/metabolismo , Podócitos/patologiaRESUMO
Although age-associated changes in kidney glomerular architecture have been described in mice and man, the mechanisms are unknown. It is unclear if these changes can be prevented or even reversed by systemic therapies administered at advanced age. Using light microscopy and transmission electron microscopy, our results showed glomerulosclerosis with injury to mitochondria in glomerular epithelial cells in mice aged 26 months (equivalent to a 79-year-old human). To test the hypothesis that reducing mitochondrial damage in late age would result in lowered glomerulosclerosis, we administered the mitochondrial targeted peptide, SS-31, to aged mice. Baseline (24-month-old) mice were randomized to receive 8 weeks of SS-31, or saline, and killed at 26 months of age. SS-31 treatment improved age-related mitochondrial morphology and glomerulosclerosis. Assessment of glomeruli revealed that SS-31 reduced senescence (p16, senescence-associated-ß-Gal) and increased the density of parietal epithelial cells. However, SS-31 treatment reduced markers of parietal epithelial cell activation (Collagen IV, pERK1/2, and α-smooth muscle actin). SS-31 did not impact podocyte density, but it reduced markers of podocyte injury (desmin) and improved cytoskeletal integrity (synaptopodin). This was accompanied by higher glomerular endothelial cell density (CD31). Thus, despite initiating therapy in late-age mice, a short course of SS-31 has protective benefits on glomerular mitochondria, accompanied by temporal changes to the glomerular architecture. This systemic pharmacological intervention in old-aged animals limits glomerulosclerosis and senescence, reduces parietal epithelial cell activation, and improves podocyte and endothelial cell integrity.