Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Math Biosci ; 373: 109204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710441

RESUMO

We introduce a biologically detailed, stochastic model of gene expression describing the multiple rate-limiting steps of transcription, nuclear pre-mRNA processing, nuclear mRNA export, cytoplasmic mRNA degradation and translation of mRNA into protein. The processes in sub-cellular compartments are described by an arbitrary number of processing stages, thus accounting for a significantly finer molecular description of gene expression than conventional models such as the telegraph, two-stage and three-stage models of gene expression. We use two distinct tools, queueing theory and model reduction using the slow-scale linear-noise approximation, to derive exact or approximate analytic expressions for the moments or distributions of nuclear mRNA, cytoplasmic mRNA and protein fluctuations, as well as lower bounds for their Fano factors in steady-state conditions. We use these to study the phase diagram of the stochastic model; in particular we derive parametric conditions determining three types of transitions in the properties of mRNA fluctuations: from sub-Poissonian to super-Poissonian noise, from high noise in the nucleus to high noise in the cytoplasm, and from a monotonic increase to a monotonic decrease of the Fano factor with the number of processing stages. In contrast, protein fluctuations are always super-Poissonian and show weak dependence on the number of mRNA processing stages. Our results delineate the region of parameter space where conventional models give qualitatively incorrect results and provide insight into how the number of processing stages, e.g. the number of rate-limiting steps in initiation, splicing and mRNA degradation, shape stochastic gene expression by modulation of molecular memory.


Assuntos
Modelos Genéticos , RNA Mensageiro , Processos Estocásticos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regulação da Expressão Gênica , Núcleo Celular/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Expressão Gênica , Biossíntese de Proteínas/genética , Transcrição Gênica
2.
Biophys J ; 123(9): 1034-1057, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38594901

RESUMO

Stochastic models of gene expression are typically formulated using the chemical master equation, which can be solved exactly or approximately using a repertoire of analytical methods. Here, we provide a tutorial review of an alternative approach based on queueing theory that has rarely been used in the literature of gene expression. We discuss the interpretation of six types of infinite-server queues from the angle of stochastic single-cell biology and provide analytical expressions for the stationary and nonstationary distributions and/or moments of mRNA/protein numbers and bounds on the Fano factor. This approach may enable the solution of complex models that have hitherto evaded analytical solution.


Assuntos
Modelos Genéticos , Processos Estocásticos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Phys Rev E ; 108(3-1): 034405, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849194

RESUMO

The telegraph model is the standard model of stochastic gene expression, which can be solved exactly to obtain the distribution of mature RNA numbers per cell. A modification of this model also leads to an analytical distribution of nascent RNA numbers. These solutions are routinely used for the analysis of single-cell data, including the inference of transcriptional parameters. However, these models neglect important mechanistic features of transcription elongation, such as the stochastic movement of RNA polymerases and their steric (excluded-volume) interactions. Here we construct a model of gene expression describing promoter switching between inactive and active states, binding of RNA polymerases in the active state, their stochastic movement including steric interactions along the gene, and their unbinding leading to a mature transcript that subsequently decays. We derive the steady-state distributions of the nascent and mature RNA numbers in two important limiting cases: constitutive expression and slow promoter switching. We show that RNA fluctuations are suppressed by steric interactions between RNA polymerases, and that this suppression can in some instances even lead to sub-Poissonian fluctuations; these effects are most pronounced for nascent RNA and less prominent for mature RNA, since the latter is not a direct sensor of transcription. We find a relationship between the parameters of our microscopic mechanistic model and those of the standard models that ensures excellent consistency in their prediction of the first and second RNA number moments over vast regions of parameter space, encompassing slow, intermediate, and rapid promoter switching, provided the RNA number distributions are Poissonian or super-Poissonian. Furthermore, we identify the limitations of inference from mature RNA data, specifically showing that it cannot differentiate between highly distinct RNA polymerase traffic patterns on a gene.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Expressão Gênica , Processos Estocásticos , Modelos Genéticos , Transcrição Gênica
4.
Nucleic Acids Res ; 51(13): 6609-6621, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37246646

RESUMO

Gene expression stochasticity is inherent in the functional properties and evolution of biological systems, creating non-genetic cellular individuality and influencing multiple processes, including differentiation and stress responses. In a distinct form of non-transcriptional noise, we find that interactions of the yeast translation machinery with the GCN4 mRNA 5'UTR, which underpins starvation-induced regulation of this transcriptional activator gene, manifest stochastic variation across cellular populations. We use flow cytometry, fluorescence-activated cell sorting and microfluidics coupled to fluorescence microscopy to characterize the cell-to-cell heterogeneity of GCN4-5'UTR-mediated translation initiation. GCN4-5'UTR-mediated translation is generally not de-repressed under non-starvation conditions; however, a sub-population of cells consistently manifests a stochastically enhanced GCN4 translation (SETGCN4) state that depends on the integrity of the GCN4 uORFs. This sub-population is eliminated upon deletion of the Gcn2 kinase that phosphorylates eIF2α under nutrient-limitation conditions, or upon mutation to Ala of the Gcn2 kinase target site, eIF2α-Ser51. SETGCN4 cells isolated using cell sorting spontaneously regenerate the full bimodal population distribution upon further growth. Analysis of ADE8::ymRuby3/ GCN4::yEGFP cells reveals enhanced Gcn4-activated biosynthetic pathway activity in SETGCN4 cells under non-starvation conditions. Computational modeling interprets our experimental observations in terms of a novel translational noise mechanism underpinned by natural variations in Gcn2 kinase activity.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiões 5' não Traduzidas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Quinases/genética , Biossíntese de Proteínas , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição de Zíper de Leucina Básica/genética
5.
Phys Rev E ; 105(1-1): 014410, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193216

RESUMO

We consider a stochastic model where a gene switches between two states, an mRNA transcript is released in the active state, and subsequently it undergoes an arbitrary number of sequential unimolecular steps before being degraded. The reactions effectively describe various stages of the mRNA life cycle such as initiation, elongation, termination, splicing, export, and degradation. We construct a mean-field approach that leads to closed-form steady-state distributions for the number of transcript molecules at each stage of the mRNA life cycle. By comparison with stochastic simulations, we show that the approximation is highly accurate over all the parameter space, independent of the type of expression (constitutive or bursty) and of the shape of the distribution (unimodal, bimodal, and nearly bimodal). The theory predicts that in a population of identical cells, any bimodality is gradually washed away as the mRNA progresses through its life cycle.

6.
Nucleic Acids Res ; 48(17): 9478-9490, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32821926

RESUMO

One of the main goals of ribosome profiling is to quantify the rate of protein synthesis at the level of translation. Here, we develop a method for inferring translation elongation kinetics from ribosome profiling data using recent advances in mathematical modelling of mRNA translation. Our method distinguishes between the elongation rate intrinsic to the ribosome's stepping cycle and the actual elongation rate that takes into account ribosome interference. This distinction allows us to quantify the extent of ribosomal collisions along the transcript and identify individual codons where ribosomal collisions are likely. When examining ribosome profiling in yeast, we observe that translation initiation and elongation are close to their optima and traffic is minimized at the beginning of the transcript to favour ribosome recruitment. However, we find many individual sites of congestion along the mRNAs where the probability of ribosome interference can reach $50\%$. Our work provides new measures of translation initiation and elongation efficiencies, emphasizing the importance of rating these two stages of translation separately.


Assuntos
Biologia Computacional/métodos , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Códon de Iniciação , Modelos Genéticos , RNA Mensageiro , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Phys Rev E ; 101(6-1): 062404, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688522

RESUMO

Recent advances in DNA sequencing and fluorescence imaging have made it possible to monitor the dynamics of ribosomes actively engaged in messenger RNA (mRNA) translation. Here, we model these experiments within the inhomogeneous totally asymmetric simple exclusion process (TASEP) using realistic kinetic parameters. In particular, we present analytic expressions to describe the following three cases: (a) translation of a newly transcribed mRNA, (b) translation in the steady state and, specifically, the dynamics of individual (tagged) ribosomes, and (c) runoff translation after inhibition of translation initiation. In cases (b) and (c) we develop an effective medium approximation to describe many-ribosome dynamics in terms of a single tagged ribosome in an effective medium. The predictions are in good agreement with stochastic simulations.


Assuntos
Modelos Genéticos , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/genética , Cinética
8.
Phys Rev E ; 97(5-1): 052139, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906846

RESUMO

We develop a power series method for the nonequilibrium steady state of the inhomogeneous one-dimensional totally asymmetric simple exclusion process (TASEP) in contact with two particle reservoirs and with site-dependent hopping rates in the bulk. The power series is performed in the entrance or exit rates governing particle exchange with the reservoirs, and the corresponding particle current is computed analytically up to the cubic term in the entry or exit rate, respectively. We also show how to compute higher-order terms using combinatorial objects known as Young tableaux. Our results address the long outstanding problem of finding the exact nonequilibrium steady state of the inhomogeneous TASEP. The findings are particularly relevant to the modeling of mRNA translation in which the rate of translation initiation, corresponding to the entrance rate in the TASEP, is typically small.

9.
Phys Rev Lett ; 120(12): 128101, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29694095

RESUMO

One of the greatest challenges in biophysical models of translation is to identify coding sequence features that affect the rate of translation and therefore the overall protein production in the cell. We propose an analytic method to solve a translation model based on the inhomogeneous totally asymmetric simple exclusion process, which allows us to unveil simple design principles of nucleotide sequences determining protein production rates. Our solution shows an excellent agreement when compared to numerical genome-wide simulations of S. cerevisiae transcript sequences and predicts that the first 10 codons, which is the ribosome footprint length on the mRNA, together with the value of the initiation rate, are the main determinants of protein production rate under physiological conditions. Finally, we interpret the obtained analytic results based on the evolutionary role of the codons' choice for regulating translation rates and ribosome densities.


Assuntos
Modelos Genéticos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequência de Bases , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
10.
Biophys J ; 108(9): 2300-11, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25954887

RESUMO

The ability to control the morphologies of biomolecular aggregates is a central objective in the study of self-assembly processes. The development of predictive models offers the surest route for gaining such control. Under the right conditions, proteins will self-assemble into fibers that may rearrange themselves even further to form diverse structures, including the formation of closed loops. In this study, chicken egg white ovalbumin is used as a model for the study of fibril loops. By monitoring the kinetics of self-assembly, we demonstrate that loop formation is a consequence of end-to-end association between protein fibrils. A model of fibril formation kinetics, including end-joining, is developed and solved, showing that end-joining has a distinct effect on the growth of fibrillar mass density (which can be measured experimentally), establishing a link between self-assembly kinetics and the underlying growth mechanism. These results will enable experimentalists to infer fibrillar morphologies from an appropriate analysis of self-assembly kinetic data.


Assuntos
Amiloide/química , Ovalbumina/química , Animais , Galinhas , Cinética , Polimerização
11.
Phys Rev Lett ; 113(9): 098101, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25216007

RESUMO

In small volumes, the kinetics of filamentous protein self-assembly is expected to show significant variability, arising from intrinsic molecular noise. This is not accounted for in existing deterministic models. We introduce a simple stochastic model including nucleation and autocatalytic growth via elongation and fragmentation, which allows us to predict the effects of molecular noise on the kinetics of autocatalytic self-assembly. We derive an analytic expression for the lag-time distribution, which agrees well with experimental results for the fibrillation of bovine insulin. Our expression decomposes the lag-time variability into contributions from primary nucleation and autocatalytic growth and reveals how each of these scales with the key kinetic parameters. Our analysis shows that significant lag-time variability can arise from both primary nucleation and from autocatalytic growth and should provide a way to extract mechanistic information on early-stage aggregation from small-volume experiments.


Assuntos
Modelos Químicos , Proteínas/química , Amiloide/química , Amiloide/metabolismo , Animais , Catálise , Bovinos , Humanos , Insulina/química , Insulina/metabolismo , Cinética , Modelos Biológicos , Proteínas/metabolismo , Processos Estocásticos
12.
Phys Rev Lett ; 112(2): 020602, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24483998

RESUMO

Condensation is the phenomenon whereby one of a sum of random variables contributes a finite fraction to the sum. It is manifested as an aggregation phenomenon in diverse physical systems such as coalescence in granular media, jamming in traffic, and gelation in networks. We show here that the same condensation scenario, which normally happens only if the underlying probability distribution has tails heavier than exponential, can occur for light-tailed distributions in the presence of additional constraints. We demonstrate this phenomenon on the sample variance, whose probability distribution conditioned on the particular value of the sample mean undergoes a phase transition. The transition is manifested by a change in behavior of the large deviation rate function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA