Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Cell ; 57(21): 2497-2513.e6, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347241

RESUMO

Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C. elegans katanin, a microtubule severing AAA ATPase mutated in microcephaly and critical for cell division, axonal elongation, and cilia biogenesis, responds precisely, differentially, and combinatorially to three chemically distinct tubulin modifications-glycylation, glutamylation, and tyrosination-but is insensitive to acetylation. Glutamylation and glycylation are antagonistic rheostats with glycylation protecting microtubules from severing. Katanin exhibits graded and divergent responses to glutamylation on the α- and ß-tubulin tails, and these act combinatorially. The katanin hexamer central pore constrains the polyglutamate chain patterns on ß-tails recognized productively. Elements distal to the katanin AAA core sense α-tubulin tyrosination, and detyrosination downregulates severing. The multivalent microtubule recognition that enables katanin to read multiple tubulin modification inputs explains in vivo observations and illustrates how effectors can integrate tubulin code signals to produce diverse functional outcomes.


Assuntos
Caenorhabditis elegans , Tubulina (Proteína) , Animais , Katanina/genética , Tubulina (Proteína)/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional
3.
Nature ; 601(7891): 132-138, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912111

RESUMO

Organelles move along differentially modified microtubules to establish and maintain their proper distributions and functions1,2. However, how cells interpret these post-translational microtubule modification codes to selectively regulate organelle positioning remains largely unknown. The endoplasmic reticulum (ER) is an interconnected network of diverse morphologies that extends promiscuously throughout the cytoplasm3, forming abundant contacts with other organelles4. Dysregulation of endoplasmic reticulum morphology is tightly linked to neurologic disorders and cancer5,6. Here we demonstrate that three membrane-bound endoplasmic reticulum proteins preferentially interact with different microtubule populations, with CLIMP63 binding centrosome microtubules, kinectin (KTN1) binding perinuclear polyglutamylated microtubules, and p180 binding glutamylated microtubules. Knockout of these proteins or manipulation of microtubule populations and glutamylation status results in marked changes in endoplasmic reticulum positioning, leading to similar redistributions of other organelles. During nutrient starvation, cells modulate CLIMP63 protein levels and p180-microtubule binding to bidirectionally move endoplasmic reticulum and lysosomes for proper autophagic responses.


Assuntos
Centrossomo/metabolismo , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Autofagia , Transporte Biológico , Linhagem Celular , Ácido Glutâmico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
4.
Nat Commun ; 11(1): 3765, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724196

RESUMO

Microtubules are dynamic tubulin polymers responsible for many cellular processes, including the capture and segregation of chromosomes during mitosis. In contrast to textbook models of tubulin self-assembly, we have recently demonstrated that microtubules elongate by addition of bent guanosine triphosphate tubulin to the tips of curving protofilaments. Here we explore this mechanism of microtubule growth using Brownian dynamics modeling and electron cryotomography. The previously described flaring shapes of growing microtubule tips are remarkably consistent under various assembly conditions, including different tubulin concentrations, the presence or absence of a polymerization catalyst or tubulin-binding drugs. Simulations indicate that development of substantial forces during microtubule growth and shortening requires a high activation energy barrier in lateral tubulin-tubulin interactions. Modeling offers a mechanism to explain kinetochore coupling to growing microtubule tips under assisting force, and it predicts a load-dependent acceleration of microtubule assembly, providing a role for the flared morphology of growing microtubule ends.


Assuntos
Microtúbulos/metabolismo , Modelos Biológicos , Tubulina (Proteína)/metabolismo , Animais , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Simulação de Dinâmica Molecular , Polimerização/efeitos dos fármacos , Suínos , Tubulina (Proteína)/isolamento & purificação , Tubulina (Proteína)/ultraestrutura , Moduladores de Tubulina/farmacologia
5.
Methods Mol Biol ; 2101: 27-38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31879896

RESUMO

Microtubules are non-covalent dynamic polymers essential for the life of all eukaryotic cells. Their dynamic behavior is regulated by a large array of cellular effectors. In vitro microtubule assays have been instrumental in dissecting the mechanism of microtubule-associated proteins. In this chapter, we focus on microtubule-severing enzymes katanin and spastin. They are AAA ATPases that generate internal breaks in microtubules by extracting tubulin dimers out of the microtubule lattice. We present protocols for TIRF microscopy-based assays that were instrumental in proving that these enzymes not only sever microtubules but also remodel the microtubule lattice by promoting the exchange of lattice GDP-tubulin with GTP-tubulin from the soluble pool. This activity can modulate microtubule dynamics and support microtubule-dependent microtubule amplification in the absence of a nucleating factor.


Assuntos
Bioensaio/métodos , Katanina/metabolismo , Microtúbulos/metabolismo , Espastina/metabolismo , Adenosina Trifosfatases/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Associadas aos Microtúbulos , Modelos Moleculares , Proteínas Recombinantes , Tubulina (Proteína)/metabolismo
6.
Dev Cell ; 52(1): 118-131.e6, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31735665

RESUMO

The AAA ATPase katanin severs microtubules. It is critical in cell division, centriole biogenesis, and neuronal morphogenesis. Its mutation causes microcephaly. The microtubule templates katanin hexamerization and activates its ATPase. The structural basis for these activities and how they lead to severing is unknown. Here, we show that ß-tubulin tails are necessary and sufficient for severing. Cryoelectron microscopy (cryo-EM) structures reveal the essential tubulin tail glutamates gripped by a double spiral of electropositive loops lining the katanin central pore. Each spiral couples allosterically to the ATPase and binds alternating, successive substrate residues, with consecutive residues coordinated by adjacent protomers. This tightly couples tail binding, hexamerization, and ATPase activation. Hexamer structures in different states suggest an ATPase-driven, ratchet-like translocation of the tubulin tail through the pore. A disordered region outside the AAA core anchors katanin to the microtubule while the AAA motor exerts the forces that extract tubulin dimers and sever the microtubule.


Assuntos
Caenorhabditis elegans/metabolismo , Katanina/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Humanos , Katanina/química , Katanina/genética , Modelos Moleculares , Conformação Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
7.
Biochem J ; 476(17): 2449-2462, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31416830

RESUMO

Minus-end directed, non-processive kinesin-14 Ncd is a dimeric protein with C-terminally located motor domains (heads). Generation of the power-stroke by Ncd consists of a lever-like rotation of a long superhelical 'stalk' segment while one of the kinesin's heads is bound to the microtubule. The last ∼30 amino acids of Ncd head play a crucial but still poorly understood role in this process. Here, we used accelerated molecular dynamics simulations to explore the conformational dynamics of several systems built upon two crystal structures of Ncd, the asymmetrical T436S mutant in pre-stroke/post-stroke conformations of two partner subunits and the symmetrical wild-type protein in pre-stroke conformation of both subunits. The results revealed a new conformational state forming following the inward motion of the subunits and stabilized with several hydrogen bonds to residues located on the border or within the C-terminal linker, i.e. a modeled extension of the C-terminus by residues 675-683. Forming of this new, compact Ncd conformation critically depends on the length of the C-terminus extending to at least residue 681. Moreover, the associative motion leading to the compact conformation is accompanied by a partial lateral rotation of the stalk. We propose that the stable compact conformation of Ncd may represent an initial state of the working stroke.


Assuntos
Proteínas de Drosophila/química , Cinesinas/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Substituição de Aminoácidos , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Cinesinas/genética , Cinesinas/metabolismo , Mutação de Sentido Incorreto , Domínios Proteicos
8.
Science ; 361(6404)2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30139843

RESUMO

Spastin and katanin sever and destabilize microtubules. Paradoxically, despite their destructive activity they increase microtubule mass in vivo. We combined single-molecule total internal reflection fluorescence microscopy and electron microscopy to show that the elemental step in microtubule severing is the generation of nanoscale damage throughout the microtubule by active extraction of tubulin heterodimers. These damage sites are repaired spontaneously by guanosine triphosphate (GTP)-tubulin incorporation, which rejuvenates and stabilizes the microtubule shaft. Consequently, spastin and katanin increase microtubule rescue rates. Furthermore, newly severed ends emerge with a high density of GTP-tubulin that protects them against depolymerization. The stabilization of the newly severed plus ends and the higher rescue frequency synergize to amplify microtubule number and mass. Thus, severing enzymes regulate microtubule architecture and dynamics by promoting GTP-tubulin incorporation within the microtubule shaft.


Assuntos
Guanosina Trifosfato/metabolismo , Katanina/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Espastina/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Caenorhabditis elegans , Drosophila melanogaster , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Imagem Individual de Molécula
9.
Nat Struct Mol Biol ; 24(9): 717-725, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28783150

RESUMO

Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases important for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of known 3D structures for these enzymes, their mechanism of action has remained poorly understood. Here we report the X-ray crystal structure of the monomeric AAA katanin module from Caenorhabditis elegans and cryo-EM reconstructions of the hexamer in two conformations. The structures reveal an unexpected asymmetric arrangement of the AAA domains mediated by structural elements unique to microtubule-severing enzymes and critical for their function. The reconstructions show that katanin cycles between open spiral and closed ring conformations, depending on the ATP occupancy of a gating protomer that tenses or relaxes interprotomer interfaces. Cycling of the hexamer between these conformations would provide the power stroke for microtubule severing.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Caenorhabditis elegans/enzimologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Katanina , Modelos Moleculares , Ligação Proteica , Conformação Proteica
10.
Eur J Cell Biol ; 95(12): 521-530, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27608966

RESUMO

End-binding proteins are capable of tracking the plus-ends of growing microtubules (MTs). The motor protein Ncd, a member of the kinesin-14 family, interacts with EB1 protein and becomes a non-autonomous tip-tracker. Here, we attempted to find out whether at least for Ncd, the efficient EB1-mediated tip-tracking involves the interaction of the kinesin with the MT surface. We prepared a series of Ncd tail mutants in which the MT-binding sites were altered or eliminated. Using TIRF microscopy, we characterized their behavior as tip-trackers and measured the dwell times of single molecules of EB1 and Ncd tail or its mutated forms. The mutated forms of Ncd tail exhibited tip-tracking in the presence of EB1 and the effectiveness of this process was proportional to the affinity of the mutant's tail to MT. Even though the interaction of Ncd with EB1 was weak (Kd∼9µM) the half saturating concentration of EB1 for tip-tracking was 7nM. The dwell time of Ncd tail in the presence of EB1 was ∼1s. The dwell time of EB1 alone was shorter (∼0.3s) and increased considerably in the presence of a large excess of Ncd tail. We demonstrated that tip-tracking of kinesin-14 occurs through several concurrent mechanisms: binding of kinesin only to EB1 located at the MT end, interaction of the kinesin molecules with a composite site formed by EB1 and the MT tip, and probably surface diffusion of the tail along MT. The second mechanism seems to play a crucial role in efficient tip-tracking.


Assuntos
Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética
11.
J Virol ; 88(2): 1002-10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198404

RESUMO

We constructed a phagemid consisting of the whole genome of the Neisseria gonorrhoeae bacteriophage NgoΦ6 cloned into a pBluescript plasmid derivative lacking the f1 origin of replication (named pBS::Φ6). Escherichia coli cells harboring pBS::Φ6 were able to produce a biologically active phagemid, NgoΦ6fm, capable of infecting, integrating its DNA into the chromosome of, and producing progeny phagemids in, a variety of taxonomically distant Gram-negative bacteria, including E. coli, Haemophilus influenzae, Neisseria sicca, Pseudomonas sp., and Paracoccus methylutens. A derivative of pBS::Φ6 lacking the phage orf7 gene, a positional homolog of filamentous phage proteins that mediate the interaction between the phage and the bacterial pilus, was capable of producing phagemid particles that were able to infect E. coli, Haemophilus influenzae, N. sicca, Pseudomonas sp., and Paracoccus methylutens, indicating that NgoΦ6 infects cells of these species using a mechanism that does not involve the Orf7 gene product and that NgoΦ6 initiates infection through a novel process in these species. We further demonstrate that the establishment of the lysogenic state does not require an active phage integrase. Since phagemid particles were capable of infecting diverse hosts, this indicates that NgoΦ6 is the first broad-host-range filamentous bacteriophage described.


Assuntos
Bacteriófagos/fisiologia , Bactérias Gram-Negativas/virologia , Neisseria gonorrhoeae/virologia , Bacteriófagos/genética , Clonagem Molecular , Especificidade de Hospedeiro , Lisogenia , Plasmídeos/genética , Plasmídeos/metabolismo
12.
Biochem Biophys Res Commun ; 425(4): 788-93, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22885185

RESUMO

Our previous studies have demonstrated that prion protein (PrP) leads to disassembly of microtubular cytoskeleton through binding to tubulin and its oligomerization. Here we found that PrP-treated cells exhibited improper morphology of mitotic spindles. Formation of aberrant spindles may result not only from altered microtubule dynamics - as expected from PrP-induced tubulin oligomerization - but also from impairing the function of molecular motors. Therefore we checked whether binding of PrP to microtubules affected movement generated by Ncd - a kinesin responsible for the proper organization of division spindles. We found that PrP inhibited Ncd-driven transport of microtubules. Most probably, the inhibition of the microtubule movement resulted from PrP-induced changes in the microtubule structure since Ncd-microtubule binding was reduced already at low PrP to tubulin molar ratios. This study suggests another plausible mechanism of PrP cytotoxicity related to the interaction with tubulin, namely impeding microtubule-dependent transport.


Assuntos
Divisão Celular , Cinesinas/metabolismo , Príons/metabolismo , Fuso Acromático/metabolismo , Animais , Cinesinas/química , Microtúbulos/química , Microtúbulos/metabolismo , Células PC12 , Príons/química , Príons/farmacologia , Transporte Proteico , Ratos , Fuso Acromático/efeitos dos fármacos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
13.
FEBS Lett ; 586(6): 854-8, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22449971

RESUMO

Ncd, a member of kinesin-14 family motors, uses the power stroke, a lever-like pivoting action of a long and stiff element, to exert force and generate movement. To better understand the role of the Ncd C-terminus in this process we produced four Ncd mutants in which this segment was altered or deleted. For these proteins we measured their affinity to the microtubule, steady-state ATPase and gliding velocity in multiple motor assays. The mutations had a dramatic effect on all three parameters measured, suggesting that the C-terminal residues of Ncd play an important role in modulating the interaction of the motor with the microtubule.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Estresse Mecânico , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Cinesinas/genética , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA