Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612407

RESUMO

A small fraction of people vaccinated with mRNA-lipid nanoparticle (mRNA-LNP)-based COVID-19 vaccines display acute or subacute inflammatory symptoms whose mechanism has not been clarified to date. To better understand the molecular mechanism of these adverse events (AEs), here, we analyzed in vitro the vaccine-induced induction and interrelations of the following two major inflammatory processes: complement (C) activation and release of proinflammatory cytokines. Incubation of Pfizer-BioNTech's Comirnaty and Moderna's Spikevax with 75% human serum led to significant increases in C5a, sC5b-9, and Bb but not C4d, indicating C activation mainly via the alternative pathway. Control PEGylated liposomes (Doxebo) also induced C activation, but, on a weight basis, it was ~5 times less effective than that of Comirnaty. Viral or synthetic naked mRNAs had no C-activating effects. In peripheral blood mononuclear cell (PBMC) cultures supplemented with 20% autologous serum, besides C activation, Comirnaty induced the secretion of proinflammatory cytokines in the following order: IL-1α < IFN-γ < IL-1ß < TNF-α < IL-6 < IL-8. Heat-inactivation of C in serum prevented a rise in IL-1α, IL-1ß, and TNF-α, suggesting C-dependence of these cytokines' induction, although the C5 blocker Soliris and C1 inhibitor Berinert, which effectively inhibited C activation in both systems, did not suppress the release of any cytokines. These findings suggest that the inflammatory AEs of mRNA-LNP vaccines are due, at least in part, to stimulation of both arms of the innate immune system, whereupon C activation may be causally involved in the induction of some, but not all, inflammatory cytokines. Thus, the pharmacological attenuation of inflammatory AEs may not be achieved via monotherapy with the tested C inhibitors; efficacy may require combination therapy with different C inhibitors and/or other anti-inflammatory agents.


Assuntos
COVID-19 , Inativadores do Complemento , Nanopartículas , Humanos , Lipossomos , Vacinas contra COVID-19/efeitos adversos , Leucócitos Mononucleares , Citocinas , Fator de Necrose Tumoral alfa , Vacina BNT162 , Ativação do Complemento , Lipídeos
2.
Methods Mol Biol ; 2789: 229-243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507008

RESUMO

A small fraction, up to 10%, of people treated intravenously with state-of-the-art nanoparticulate drugs or diagnostic agents develop an acute infusion reaction which can be severe or even lethal. Activation of the complement (C) system can play a causal, or contributing role in these atypical, "pseudoallergic" reactions, hence their name, C activation-related pseudoallergy (CARPA). Intravenous (i.v.) administration of the human reaction-triggering (very small) dose of a test sample in pigs triggers a symptom tetrad (characteristic hemodynamic, hematological, skin, and laboratory changes) that correspond to the major human symptoms. Quantitating these changes provides a highly sensitive and reproducible method for assessing the risk of CARPA, enabling the implementation of appropriate preventive measures. Accordingly, the porcine CARPA model has been increasingly used for the safety evaluation of therapeutic and diagnostic nanomedicines and, recently, mRNA-lipid nanoparticle vaccines. This chapter provides details of the experimental procedure followed upon using the model.


Assuntos
Anafilaxia , Hipersensibilidade a Drogas , Nanopartículas , Vacinas , Suínos , Humanos , Animais , Ativação do Complemento , Nanopartículas/efeitos adversos , Anafilaxia/etiologia
3.
Biomed Pharmacother ; 166: 115294, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567071

RESUMO

BACKGROUND AND OBJECTIVE: Cytokine storm (CS) is a major contributor to the fatal outcome of severe infectious diseases, including Covid-19. Treatment with the complement (C) C5 inhibitor eculizumab was beneficial in end-stage Covid-19, however, the mechanism of this effect is unknown. To clarify this, we analyzed the relationship between C activation and production of pro-inflammatory cytokines in a PBMC model. METHODS: Human PBMC with or without 20 % autologous serum was incubated with C3a, C5a, zymosan or zymosan-pre-activated serum (ZAS) for 24 h with or without eculizumab or the C5a receptor antagonist, DF2593A. C activation (sC5b-9) and 9 inflammatory cytokines were measured by ELISA. RESULTS: In serum-free unstimulated PBMC only IL-8 release could be measured during incubation. Addition of C5a increased IL-8 secretion only, ZAS induced both IL-2 and IL-8, while zymosan led to significant production of all cytokines, most abundantly IL-8. In the presence of serum the above effects were greatly enhanced, and the zymosan-induced rises of IL-1α, IL-1ß IFN-γ and IL-2 were significantly attenuated by eculizumab but not by DF2593a. CONCLUSIONS: These data highlight the complexity of interrelationships between C activation and cytokine secretion under different experimental conditions. The clinically relevant findings include the abundant formation of the chemokine IL-8, which was stimulated by C5a, and the suppression of numerous inflammatory cytokines by eculizumab, which explains its therapeutic efficacy in severe Covid-19. These data strengthen the clinical relevance of the applied PBMC model for drug screening against CS, enabling the separation of complex innate immune cross-talks.


Assuntos
COVID-19 , Citocinas , Humanos , Citocinas/farmacologia , Interleucina-2/farmacologia , Zimosan/farmacologia , Leucócitos Mononucleares , Síndrome da Liberação de Citocina/tratamento farmacológico , Interleucina-8/farmacologia , Interferon gama/farmacologia
4.
ACS Nano ; 17(14): 13147-13157, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37417667

RESUMO

Despite the worldwide success of mRNA-LNP Covid-19 vaccines, the nanoscale structures of these formulations are still poorly understood. To fill this gap, we used a combination of atomic force microscopy (AFM), dynamic light scattering (DLS), transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryo-TEM), and the determination of the intra-LNP pH gradient to analyze the nanoparticles (NPs) in BNT162b2 (Comirnaty), comparing it with the well-characterized PEGylated liposomal doxorubicin (Doxil). Comirnaty NPs had similar size and envelope lipid composition to Doxil; however, unlike Doxil liposomes, wherein the stable ammonium and pH gradient enables accumulation of 14C-methylamine in the intraliposomal aqueous phase, Comirnaty LNPs lack such pH gradient in spite of the fact that the pH 4, at which LNPs are prepared, is raised to pH 7.2 after loading of the mRNA. Mechanical manipulation of Comirnaty NPs with AFM revealed soft, compliant structures. The sawtooth-like force transitions seen during cantilever retraction imply that molecular strands, corresponding to mRNA, can be pulled out of NPs, and the process is accompanied by stepwise rupture of mRNA-lipid bonds. Unlike Doxil, cryo-TEM of Comirnaty NPs revealed a granular, solid core enclosed by mono- and bilipid layers. Negative staining TEM shows 2-5 nm electron-dense spots in the LNP's interior that are aligned into strings, semicircles, or labyrinth-like networks, which may imply cross-link-stabilized RNA fragments. The neutral intra-LNP core questions the dominance of ionic interactions holding together this scaffold, raising the possibility of hydrogen bonding between mRNA and the lipids. Such interaction, described previously for another mRNA/lipid complex, is consistent with the steric structure of the ionizable lipid in Comirnaty, ALC-0315, displaying free ═O and -OH groups. It is hypothesized that the latter groups can get into steric positions that enable hydrogen bonding with the nitrogenous bases in the mRNA. These structural features of mRNA-LNP may be important for the vaccine's activities in vivo.


Assuntos
COVID-19 , Nanopartículas , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , Ligação de Hidrogênio , RNA Mensageiro/genética , Nanopartículas/química , Lipídeos/química , Lipossomos/química , RNA Interferente Pequeno/química
5.
Vaccine ; 41(31): 4561-4570, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37330369

RESUMO

A small fraction of recipients who receive polyethylene-glycol (PEG)-containing COVID-19 mRNA-LNP vaccines (Comirnaty and Spikevax) develop hypersensitivity reactions (HSRs) or anaphylaxis. A causal role of anti-PEG antibodies (Abs) has been proposed, but not yet been proven in humans.We used ELISA for serial measurements of SARS-CoV-2 neutralizing Ab (anti-S) and anti-PEG IgG/IgM Ab levels before and after the first and subsequent booster vaccinations with mRNA-LNP vaccines in a total of 291 blood donors. The HSRs in 15 subjects were graded and correlated with anti-PEG IgG/IgM, just as the anti-S and anti-PEG Ab levels with each other. The impacts of gender, allergy, mastocytosis and use of cosmetics were also analyzed. Serial testing of two or more plasma samples showed substantial individual variation of anti-S Ab levels after repeated vaccinations, just as the levels of anti-PEG IgG and IgM, which were over baseline in 98-99 % of unvaccinated individuals. About 3-4 % of subjects in the strongly left-skewed distribution had 15-45-fold higher values than the median, referred to as anti-PEG Ab supercarriers. Both vaccines caused significant rises of anti-PEG IgG/IgM with >10-fold rises in about âˆ¼10 % of Comirnaty, and all Spikevax recipients. The anti-PEG IgG and/or IgM levels in the 15 vaccine reactors (3 anaphylaxis) were significantly higher compared to nonreactors. Serial testing of plasma showed significant correlation between the booster injection-induced rises of anti-S and anti-PEG IgGs, suggesting coupled anti-S and anti-PEG immunogenicity.Conclusions: The small percentage of people who have extremelevels of anti-PEG Ab in their blood may be at increased risk for HSRs/anaphylaxis to PEGylated vaccines and other PEGylated injectables. This risk might be further increased by the anti-PEG immunogenicity of these vaccines. Screening for anti-PEG Ab "supercarriers" may help predicting reactors and thus preventing these adverse phenomena.


Assuntos
Anafilaxia , Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Glicóis , Imunoglobulina G , Imunoglobulina M , RNA Mensageiro , SARS-CoV-2
6.
Hum Vaccin Immunother ; 19(1): 2188035, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37062957

RESUMO

The rising need for repeated booster vaccinations against SARS-CoV-2 infections raises the question of whether chronic immunosuppressive chemotherapies influence the efficacy of vaccination. Here, we present the case of a 70-year-old post-thymoma surgery patient who received Vepesid (etoposide, Xediton Pharmaceuticals Inc) chemotherapy for six months before vaccination with Comirnaty (Pfizer-BioNTech COVID-19 mRNA Vaccine). The first two vaccinations elicited only minimal increases of IgG antibodies specific against the receptor-binding domain (RBD) on the spike protein (S1), while the third vaccination was effective in providing high, slowly subsiding antibody titers over a 7-month period. The patient also developed a cellular immune response after the third vaccination. Also, measuring of anti-polyethylene glycol (PEG) IgM titers before and after vaccinations showed no immunogenicity for PEG. Later, a single dose of Sinopharm (China National Pharmaceutical Group) inactivated virus-type vaccine was administered, which also modestly increased the level of IgG. A symptomless COVID-19 infection, however, greatly increased the serum level of anti-RBD IgG, which later subsided. This case confirms that an effective immune response can be achieved with a series of COVID-19 vaccinations despite cytostatic treatment in an old thymus cancer surviving patient in the absence of adverse reactions.


Assuntos
COVID-19 , Neoplasias do Timo , Idoso , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , Etoposídeo , Imunoglobulina G , Polietilenoglicóis , Anticorpos Antivirais , Vacinação
7.
Int J Nanomedicine ; 18: 2071-2086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113796

RESUMO

Introduction: One of the major challenges in the clinical translation of nanoparticles is the development of formulations combining favorable efficacy and optimal safety. In the past, iron oxide nanoparticles have been introduced as an alternative for gadolinium-containing contrast agents; however, candidates available at the time were not free from adverse effects. Methods: Following the development of a potent iron oxide-based contrast agent SPIONDex, we now performed a systematic comparison of this formulation with the conventional contrast agent ferucarbotran and with ferumoxytol, taking into consideration their physicochemical characteristics, bio- and hemocompatibility in vitro and in vivo, as well as their liver imaging properties in rats. Results: The results demonstrated superior in vitro cyto-, hemo- and immunocompatibility of SPIONDex in comparison to the other two formulations. Intravenous administration of ferucarbotran or ferumoxytol induced strong complement activation-related pseudoallergy in pigs. In contrast, SPIONDex did not elicit any hypersensitivity reactions in the experimental animals. In a rat model, comparable liver imaging properties, but a faster clearance was demonstrated for SPIONDex. Conclusion: The results indicate that SPIONDex possess an exceptional safety compared to the other two formulations, making them a promising candidate for further clinical translation.


Assuntos
Meios de Contraste , Nanopartículas de Magnetita , Ratos , Animais , Suínos , Óxido Ferroso-Férrico , Segurança do Paciente , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/toxicidade
8.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674654

RESUMO

Hemodynamic disturbance, a rise in neutrophil-to-lymphocyte ratio (NLR) and release of inflammatory cytokines into blood, is a bad prognostic indicator in severe COVID-19 and other diseases involving cytokine storm syndrome (CSS). The purpose of this study was to explore if zymosan, a known stimulator of the innate immune system, could reproduce these changes in pigs. Pigs were instrumented for hemodynamic analysis and, after i.v. administration of zymosan, serial blood samples were taken to measure blood cell changes, cytokine gene transcription in PBMC and blood levels of inflammatory cytokines, using qPCR and ELISA. Zymosan bolus (0.1 mg/kg) elicited transient hemodynamic disturbance within minutes without detectable cytokine or blood cell changes. In contrast, infusion of 1 mg/kg zymosan triggered maximal pulmonary hypertension with tachycardia, lasting for 30 min. This was followed by a transient granulopenia and then, up to 6 h, major granulocytosis, resulting in a 3-4-fold increase in NLR. These changes were paralleled by massive transcription and/or rise in IL-6, TNF-alpha, CCL-2, CXCL-10, and IL-1RA in blood. There was significant correlation between lymphopenia and IL-6 gene expression. We conclude that the presented model may enable mechanistic studies on late-stage COVID-19 and CSS, as well as streamlined drug testing against these conditions.


Assuntos
COVID-19 , Citocinas , Suínos , Animais , Citocinas/metabolismo , Zimosan/farmacologia , Interleucina-6/metabolismo , Síndrome da Liberação de Citocina/etiologia , Leucócitos Mononucleares/metabolismo , Imunidade Inata
9.
Biomedicines ; 10(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35885068

RESUMO

Liposomal amphotericin B (Abelcet) can cause infusion (anaphylactoid) reactions in patients whose mechanism is poorly understood. Here, we used mice to investigate the role of complement (C) receptors and the cellular sources of vasoactive mediators in these reactions. Anesthetized male NMRI and thromboxane prostanoid receptor (TP) or cyclooxygenase-1 (COX-1)-deficient and wild type C57Bl6/N mice were intravenously injected with Abelcet at 30 mg/kg. Mean arterial blood pressure (MABP) and heart rate (HR) were measured. In untreated mice, Abelcet caused a short (15 min) but large (30%) increase in MABP. C depletion with cobra venom factor (CVF) and inhibition of C5a receptors with DF2593A considerably prolonged, while C3aR inhibition with SB290157 significantly decreased the hypertensive effect. Likewise, the hypertensive response was abolished in COX-1- and TP-deficient mice. CVF caused a late hypertension in TP-deficient mice. Both macrophage depletion with liposomal clodronate and blockade of platelet GPIIb/IIIa receptors with eptifibatide prolonged the hypertensive effect. The early phase of the hypertensive effect is COX-1- and TP-receptor-dependent, partly mediated by C3aR. In contrast, the late phase is under the control of vasoactive mediators released from platelets and macrophages subsequent to complement activation and C5a binding to its receptor.

11.
Nat Nanotechnol ; 17(4): 337-346, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393599

RESUMO

After over a billion of vaccinations with messenger RNA-lipid nanoparticle (mRNA-LNP) based SARS-CoV-2 vaccines, anaphylaxis and other manifestations of hypersensitivity can be considered as very rare adverse events. Although current recommendations include avoiding a second dose in those with first-dose anaphylaxis, the underlying mechanisms are unknown; therefore, the risk of a future reaction cannot be predicted. Given how important new mRNA constructs will be to address the emergence of new viral variants and viruses, there is an urgent need for clinical approaches that would allow a safe repeated immunization of high-risk individuals and for reliable predictive tools of adverse reactions to mRNA vaccines. In many aspects, anaphylaxis symptoms experienced by the affected vaccine recipients resemble those of infusion reactions to nanomedicines. Here we share lessons learned over a decade of nanomedicine research and discuss the current knowledge about several factors that individually or collectively contribute to infusion reactions to nanomedicines. We aim to use this knowledge to inform the SARS-CoV-2 lipid-nanoparticle-based mRNA vaccine field.


Assuntos
Anafilaxia , COVID-19 , Anafilaxia/etiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Lipossomos , Nanomedicina , Nanopartículas , RNA Mensageiro/genética , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
12.
Geroscience ; 44(2): 597-618, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146583

RESUMO

A tiny fraction of people immunized with lipid nanoparticle (LNP)-enclosed mRNA (LNP-mRNA) vaccines develop allergic symptoms following their first or subsequent vaccinations, including anaphylaxis. These reactions resemble complement (C) activation-related pseudoallergy (CARPA) to i.v. administered liposomes, for which pigs provide a naturally oversensitive model. Using this model, we injected i.v. the human vaccination dose (HVD) of BNT162b2 (Comirnaty, CMT) or its 2-fold (2x) or 5-fold (5x) amounts and measured the hemodynamic changes and other parameters of CARPA. We observed in 6 of 14 pigs transient pulmonary hypertension along with thromboxane A2 release into the blood and other hemodynamic and blood cell changes, including hypertension, granulocytosis, lymphopenia, and thrombocytopenia. One pig injected with 5x CMT developed an anaphylactic shock requiring resuscitation, while a repeat dose failed to induce the reaction, implying tachyphylaxis. These typical CARPA symptoms could not be linked to animal age, sex, prior immune stimulation with zymosan, immunization of animals with Comirnaty i.v., or i.m. 2 weeks before the vaccine challenge, and anti-PEG IgM levels in Comirnaty-immunized pigs. Nevertheless, IgM binding to the whole vaccine, used as antigen in an ELISA, was significantly higher in reactive animals compared to non-reactive ones. Incubation of Comirnaty with pig serum in vitro showed significant elevations of C3a anaphylatoxin and sC5b-9, the C-terminal complex. These data raise the possibility that C activation plays a causal or contributing role in the rare HSRs to Comirnaty and other vaccines with similar side effects. Further studies are needed to uncover the factors controlling these vaccine reactions in pigs and to understand their translational value to humans.


Assuntos
Vacinas contra COVID-19 , Vacinas de mRNA , Animais , Vacina BNT162/efeitos adversos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Ativação do Complemento , Humanos , Imunoglobulina M/imunologia , Lipossomos , Nanopartículas , Suínos , Vacinas Sintéticas/efeitos adversos , Vacinas de mRNA/efeitos adversos
13.
J Control Release ; 341: 475-486, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890719

RESUMO

PEGylation of lipid-based nanoparticles and other nanocarriers is widely used to increase their stability and plasma half-life. However, either pre-existing or de novo formed anti-PEG antibodies can induce hypersensitivity reactions and accelerated blood clearance through binding to the nanoparticle surfaces, leading to activation of the complement system. In this study, we investigated the consequences and mechanisms of complement activation by anti-PEG antibodies interacting with different types of PEGylated lipid-based nanoparticles. By using both liposomes loaded with different (model) drugs and LNPs loaded with mRNA, we demonstrate that complement activation triggered by anti-PEG antibodies can compromise the bilayer/surface integrity, leading to premature drug release or exposure of their mRNA contents to serum proteins. Anti-PEG antibodies also can induce deposition of complement fragments onto the surface of PEGylated lipid-based nanoparticles and induce the release of fluid phase complement activation products. The role of the different complement pathways activated by lipid-based nanoparticles was studied using deficient sera and/or inhibitory antibodies. We identified a major role for the classical complement pathway in the early activation events leading to the activation of C3. Our data also confirm the essential role of amplification of C3 activation by alternative pathway components in the lysis of liposomes. Finally, the levels of pre-existing anti-PEG IgM antibodies in plasma of healthy donors correlated with the degree of complement activation (fixation and lysis) induced upon exposure to PEGylated liposomes and mRNA-LNPs. Taken together, anti-PEG antibodies trigger complement activation by PEGylated lipid-based nanoparticles, which can potentially compromise their integrity, leading to premature drug release or cargo exposure to serum proteins.


Assuntos
Lipossomos , Nanopartículas , Proteínas do Sistema Complemento , Lipídeos , Lipossomos/química , Nanopartículas/química , Polietilenoglicóis/química
14.
Adv Drug Deliv Rev ; 180: 114079, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902516

RESUMO

Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.


Assuntos
Portadores de Fármacos , Nanomedicina , Polietilenoglicóis/química , Animais , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Sistemas de Liberação de Medicamentos , Humanos
15.
Ren Fail ; 43(1): 1609-1620, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34882053

RESUMO

Hemodialysis reactions (HDRs) resemble complement-activation-related pseudoallergy (CARPA) to certain i.v. drugs, for which pigs provide a sensitive model. On this basis, to better understand the mechanism of human HDRs, we subjected pigs to hemodialysis using polysulfone (FX CorDiax 40, Fresenius) or cellulose triacetate (SureFlux-15UX, Nipro) dialyzers, or Dialysis exchange-set without membranes, as control. Experimental endpoints included typical biomarkers of porcine CARPA; pulmonary arterial pressure (PAP), blood cell counts, plasma sC5b-9 and thromboxane-B2 levels. Hemodialysis (60 min) was followed by reinfusion of extracorporeal blood into the circulation, and finally, an intravenous bolus injection of the complement activator zymosan. The data indicated low-extent steady rise of sC5b-9 along with transient leukopenia, secondary leukocytosis and thrombocytopenia in the two dialyzer groups, consistent with moderate complement activation. Surprisingly, small changes in baseline PAP and plasma thromboxane-B2 levels during hemodialysis switched into 30%-70% sharp rises in all three groups resulting in synchronous spikes within minutes after blood reinfusion. These observations suggest limited complement activation by dialyzer membranes, on which a membrane-independent second immune stimulus was superimposed, and caused pathophysiological changes also characteristic of HDRs. Thus, the porcine CARPA model raises the hypothesis that a second "hit" on anaphylatoxin-sensitized immune cells may be a key contributor to HDRs.


Assuntos
Ativação do Complemento/imunologia , Hipersensibilidade/imunologia , Membranas Artificiais , Diálise Renal , Animais , Biomarcadores/análise , Celulose/análogos & derivados , Modelos Animais de Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hemodinâmica , Polímeros , Sulfonas , Suínos , Zimosan/farmacologia
16.
Magy Onkol ; 65(2): 129-138, 2021 Jun 03.
Artigo em Húngaro | MEDLINE | ID: mdl-34106097

RESUMO

The most frequent cancer types are lung and breast cancer in the Western world. However, the prognosis of breast cancer patients shows an improved tendency, while lung cancer types remained with high mortality. Intratumor heterogeneity (ITH) frequently leads to the failure of treatments, so there is an unmet need revealing ITH at single cell resolution. Our aim was to study female-derived human H1975 lung and MDA-MB-231 triple-negative breast cancer adenocarcinoma cell line models using single cell mass cytometry. Nine of thirteen carcinoma markers showed significant differences in the percentage of cells. Our current work shed light on the intra- and inter cell line heterogeneity still preserved in the studied, widely-used adenocarcinoma laboratory models.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Neoplasias Pulmonares , Linhagem Celular Tumoral , Feminino , Humanos , Pulmão , Neoplasias Pulmonares/genética
17.
Database (Oxford) ; 20212021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963845

RESUMO

Numerous studies demonstrate frequent mutations in the genome of SARS-CoV-2. Our goal was to statistically link mutations to severe disease outcome. We used an automated machine learning approach where 1594 viral genomes with available clinical follow-up data were used as the training set (797 'severe' and 797 'mild'). The best algorithm, based on random forest classification combined with the LASSO feature selection algorithm, was employed to the training set to link mutation signatures and outcome. The performance of the final model was estimated by repeated, stratified, 10-fold cross validation (CV) and then adjusted for multiple testing with Bootstrap Bias Corrected CV. We identified 26 protein and Untranslated Region (UTR) mutations significantly linked to severe outcome. The best classification algorithm uses a mutation signature of 22 mutations as well as the patient's age as the input and shows high classification efficiency with an area under the curve (AUC) of 0.94 [confidence interval (CI): [0.912, 0.962]] and a prediction accuracy of 87% (CI: [0.830, 0.903]). Finally, we established an online platform (https://covidoutcome.com/) that is capable to use a viral sequence and the patient's age as the input and provides a percentage estimation of disease severity. We demonstrate a statistical association between mutation signatures of SARS-CoV-2 and severe outcome of COVID-19. The established analysis platform enables a real-time analysis of new viral genomes.


Assuntos
COVID-19/genética , COVID-19/patologia , Genoma Viral , Mutação , SARS-CoV-2/genética , Índice de Gravidade de Doença , Área Sob a Curva , COVID-19/virologia , Conjuntos de Dados como Assunto , Humanos , Aprendizado de Máquina , Probabilidade , Regiões não Traduzidas
18.
Front Immunol ; 12: 642860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995361

RESUMO

Cytokine storm (CS), an excessive release of proinflammatory cytokines upon overactivation of the innate immune system, came recently to the focus of interest because of its role in the life-threatening consequences of certain immune therapies and viral diseases, including CAR-T cell therapy and Covid-19. Because complement activation with subsequent anaphylatoxin release is in the core of innate immune stimulation, studying the relationship between complement activation and cytokine release in an in vitro CS model holds promise to better understand CS and identify new therapies against it. We used peripheral blood mononuclear cells (PBMCs) cultured in the presence of autologous serum to test the impact of complement activation and inhibition on cytokine release, testing the effects of liposomal amphotericin B (AmBisome), zymosan and bacterial lipopolysaccharide (LPS) as immune activators and heat inactivation of serum, EDTA and mini-factor H (mfH) as complement inhibitors. These activators induced significant rises of complement activation markers C3a, C4a, C5a, Ba, Bb, and sC5b-9 at 45 min of incubation, with or without ~5- to ~2,000-fold rises of IL-1α, IL-1ß, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13 and TNFα at 6 and 18 h later. Inhibition of complement activation by the mentioned three methods had differential inhibition, or even stimulation of certain cytokines, among which effects a limited suppressive effect of mfH on IL-6 secretion and significant stimulation of IL-10 implies anti-CS and anti-inflammatory impacts. These findings suggest the utility of the model for in vitro studies on CS, and the potential clinical use of mfH against CS.


Assuntos
COVID-19/imunologia , Ativação do Complemento , Síndrome da Liberação de Citocina/imunologia , Interleucina-10/imunologia , Interleucina-6/imunologia , Leucócitos Mononucleares/imunologia , Modelos Imunológicos , SARS-CoV-2/imunologia , COVID-19/patologia , Fator H do Complemento/imunologia , Síndrome da Liberação de Citocina/patologia , Humanos , Leucócitos Mononucleares/patologia , Leucócitos Mononucleares/virologia
19.
Nanomedicine ; 34: 102366, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549818

RESUMO

Intravenous administration of lipid-based nanodrugs can cause hypersensitivity, also known as infusion reactions (IRs), that can be attenuated by slow infusion in adult patients. We studied the role of infusion rate and complement (C) activation in IRs in pediatric patients treated with Abelcet, and also in anesthetized rats. IRs were observed in 6 out of 10 (60%) patients who received Abelcet infusion in 4 h or less, while no patients who received the infusion in 6 h showed C activation or IRs. The rat model indicated an inverse relationship between infusion speed and Abelcet-induced hypotension, taken as an experimental endpoint of IRs, while the rise of C3a in blood, an index of C activation, directly correlated with hypotension. The results suggest that pediatric patients are more prone to produce IRs, and that the optimal infusion time of Abelcet may be much longer than the presently recommended 2 h.


Assuntos
Anfotericina B/efeitos adversos , Antifúngicos/efeitos adversos , Complemento C3a/metabolismo , Hipersensibilidade a Drogas , Anfotericina B/administração & dosagem , Animais , Antifúngicos/administração & dosagem , Criança , Ativação do Complemento , Humanos , Infusões Intravenosas , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
20.
Front Immunol ; 11: 584966, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193403

RESUMO

Intravenous injection of nanopharmaceuticals can induce severe hypersensitivity reactions (HSRs) resulting in anaphylactoid shock in a small percentage of patients, a phenomenon explicitly reproducible in pigs. However, there is a debate in the literature on whether the pig model of HSRs can be used as a safety test for the prediction of severe adverse reactions in humans. Given the importance of using appropriate animal models for toxicity/safety testing, the choice of the right species and model is a critical decision. In order to facilitate the decision process and to expand the relevant information regarding the pig or no pig dilemma, this review examines an ill-fated clinical development program conducted by Baxter Corporation in the United States 24 years ago, when HemeAssist, an αα (diaspirin) crosslinked hemoglobin-based O2 carrier (HBOC) was tested in trauma patients. The study showed increased mortality in the treatment group relative to controls and had to be stopped. This disappointing result had far-reaching consequences and contributed to the setback in blood substitute research ever since. Importantly, the increased mortality of trauma patients was predicted in pig experiments conducted by US Army scientists, yet they were considered irrelevant to humans. Here we draw attention to that the underlying cause of hemoglobin-induced aggravation of hemorrhagic shock and severe HSRs have a common pathomechanism: cardiovascular distress due to vasoconstrictive effects of hemoglobin (Hb) and reactogenic nanomedicines, manifested, among others, in pulmonary hypertension. The main difference is that in the case of Hb this effect is due to NO-binding, while nanomedicines can trigger the release of proinflammatory mediators. Because of the higher sensitivity of cloven-hoof animals to this kind of cardiopulmonary distress compared to rodents, these reactions can be better reproduced in pigs than in murine or rat models. When deciding on the battery of tests and the appropriate models to identify the potential hazard for nanomedicine-induced severe HSR, the pros and cons of the various species must be considered carefully.


Assuntos
Hipersensibilidade a Drogas/metabolismo , Hipersensibilidade a Drogas/prevenção & controle , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Anafilaxia/metabolismo , Anafilaxia/prevenção & controle , Animais , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/metabolismo , Nanomedicina/métodos , Choque Hemorrágico/metabolismo , Choque Hemorrágico/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA