Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 159(19)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37971038

RESUMO

We report the results of measurements of thermal conductivity coefficient dependence on temperature of single crystals of SrIr4In2Ge4 and EuIr4In2Ge4. The measurements were carried out over the temperature range of ∼5-300 K. The EuIr4In2Ge4 crystal, unlike its strontium analog SrIr4In2Ge4, shows an amazing anisotropy: At low temperatures, it displays significantly smaller thermal conductivity in the ab plane than in the direction of c axis, while at the high ones the thermal conductivity in the direction perpendicular to the c axis increases well above that of in the c axis. The observed phenomena may be a result of the interaction of phonons with 1D chains of short-range ordered magnetic moment of europium atoms and the exchange energy between the chains in the paramagnetic phase of EuIr4In2Ge4.

2.
Chem Mater ; 34(22): 10104-10112, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36439319

RESUMO

Mixing molecular cations in hybrid lead halide perovskites is a highly effective approach to enhance the stability and performance of optoelectronic devices based on these compounds. In this work, we prepare and study novel mixed 3D methylammonium (MA)-ethylammonium (EA) MA1-x EA x PbI3 (x < 0.4) hybrid perovskites. We use a suite of different techniques to determine the structural phase diagram, cation dynamics, and photoluminescence properties of these compounds. Upon introduction of EA, we observe a gradual lowering of the phase-transition temperatures, indicating stabilization of the cubic phase. For mixing levels higher than 30%, we obtain a complete suppression of the low-temperature phase transition and formation of a new tetragonal phase with a different symmetry. We use broad-band dielectric spectroscopy to study the dielectric response of the mixed compounds in an extensive frequency range, which allows us to distinguish and characterize three distinct dipolar relaxation processes related to the molecular cation dynamics. We observe that mixing increases the rotation barrier of the MA cations and tunes the dielectric permittivity values. For the highest mixing levels, we observe the signatures of the dipolar glass phase formation. Our findings are supported by density functional theory calculations. Our photoluminescence measurements reveal a small change of the band gap upon mixing, indicating the suitability of these compounds for optoelectronic applications.

3.
J Phys Chem Lett ; 13(22): 5061-5067, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35652901

RESUMO

We demonstrate that the heat capacity Boson peak (BP)-like anomaly appearing in fully ordered anharmonic molecular crystals emerges as a result of the strong interactions between propagating (acoustic) and low-energy quasi-localized (optical) phonons. In particular, we experimentally determine the low-temperature (<30 K) specific heat of the molecular crystal benzophenone and those of several of its fully ordered bromine derivatives. Subsequently, by means of theoretical first-principles methods based on density functional theory, we estimate the corresponding phonon dispersions and vibrational density of states. Our results reveal two possible mechanisms for the emergence of the BP-like anomaly: (i) acoustic-optic phonon avoided crossing, which gives rise to a pseudo-van Hove singularity in the acoustic phonon branches, and (ii) piling up of low-frequency optical phonons, which are quasi degenerate with longitudinal acoustic modes and lead to a surge in the vibrational density of states at low energies.

4.
Materials (Basel) ; 15(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35407937

RESUMO

The gadolinium, gallium, aluminum garnet doped with cerium and co-doped with dysprosium ions were prepared using sol gel method. The SEM images show that after synthesis, the grains are below 100 nm. The powders were ultrasonically mixed with graphene nanoflakes and ceramics were prepared using the high pressure low temperature sintering technique. A series of the ceramics was prepared using different graphene content. The structure of the samples was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman techniques. The spectroscopic properties were checked using conventional and persistent luminescence spectra measurements. The thermoluminescence glow curves and fading time of persistent luminescence measurements were performed to check how the graphene presence affects the electron traps number and depth. It was found that the addition of graphene improved the thermal conductivity of co-doped samples. This resulted in faster release of deeper traps and an increase in fading of persistent luminescence. The possibility of releasing energy from deep traps without additional stimulation may allow the use in different applications, the matrices and luminescent ions, which so far did not show persistent luminescence at room temperature.

5.
Sci Rep ; 11(1): 18640, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545134

RESUMO

Disorder-disorder phase transitions are rare in nature. Here, we present a comprehensive low-temperature experimental and theoretical study of the heat capacity and vibrational density of states of 1-fluoro-adamantane (C10H15F), an intriguing molecular crystal that presents a continuous disorder-disorder phase transition at T = 180 K and a low-temperature tetragonal phase that exhibits fractional fluorine occupancy. It is shown that fluorine occupancy disorder in the low-T phase of 1-fluoro-adamantane gives rise to the appearance of low-temperature glassy features in the corresponding specific heat (i.e., "boson peak" -BP-) and vibrational density of states. We identify the inflation of low-energy optical modes as the main responsible for the appearance of such glassy heat-capacity features and propose a straightforward correlation between the first localized optical mode and maximum BP temperature for disordered molecular crystals (either occupational or orientational). Thus, the present study provides new physical insights into the possible origins of the BP appearing in disordered materials and expands the set of molecular crystals in which "glassy-like" heat-capacity features have been observed.

6.
Nat Commun ; 11(1): 5103, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037192

RESUMO

Cation engineering provides a route to control the structure and properties of hybrid halide perovskites, which has resulted in the highest performance solar cells based on mixtures of Cs, methylammonium, and formamidinium. Here, we present a multi-technique experimental and theoretical study of structural phase transitions, structural phases and dipolar dynamics in the mixed methylammonium/dimethylammonium MA1-xDMAxPbBr3 hybrid perovskites (0 ≤ x ≤ 1). Our results demonstrate a significant suppression of the structural phase transitions, enhanced disorder and stabilization of the cubic phase even for a small amount of dimethylammonium cations. As the dimethylammonium concentration approaches the solubility limit in MAPbBr3, we observe the disappearance of the structural phase transitions and indications of a glassy dipolar phase. We also reveal a significant tunability of the dielectric permittivity upon mixing of the molecular cations that arises from frustrated electric dipoles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA