Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124350

RESUMO

The paper describes the type of changes in the structure and mechanical properties of 3D printed shapes under the influence of mineral oil. The effects of a room (23 °C) and elevated temperature (70 °C) on 3D prints manufactured by the FDM method and stored in oil for 15, 30, and 60 days on the change of properties and structure were investigated. The samples were produced from ABS (poly(acrylonitrile-co-butadiene-co-styrene)), ASA (poly(acrylonitrile-co-styrene-co-acrylate), PLA (poly(lactic acid)), and HIPS (high-impact polystyrene). Tests related to the strength of the materials, such as the static tensile test and Charpy impact test, were carried out. The structure was evaluated using a scanning electron microscope, and changes in chemical structure were determined by conducting FTIR (Fourier transform infrared spectroscopy) and TGA (thermogravimetric analysis) tests. The analysis of the results provided important information about the impact of mineral oil on specific materials. This is critical for designing and manufacturing components that can withstand mineral oil exposure in real-world environments. The materials underwent varying changes. Strength increased for PLA by about 28%, remained unchanged for ABS and HIPS during exposure for 30 days, and decreased for ASA with extended exposure up to 14%.

2.
Materials (Basel) ; 16(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38068245

RESUMO

Thin-walled and thick-walled microcellular moldings were obtained by MuCell® technology with nitrogen as a supercritical fluid. 2 mm thick polyamide 6 (PA6) with 30% wt. glass fiber (GF) samples were cut from automotive industrial elements, while 4 mm, 6 mm, and 8.4 mm thick moldings of PA6.6 with 30% wt. GF were molded into a dumbbell shape. The internal structure was investigated by scanning electron microscopy (SEM) and X-ray computed microtomography (micro-CT) and compared by numerical simulations for microcellular moldings using Moldex3D® 2022 software. Young's modulus, and tensile and impact strength were investigated. Weak mechanical properties of 2 mm thick samples and excellent results for thick-walled moldings were explained. SEM pictures, micro-CT, and simulation graphs revealed the tendency to decrease the cell size diameter together with increasing sample thickness from 2 mm up to 8.4 mm.

3.
Polymers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201666

RESUMO

The article presents the research results on the influence of variable shock conditions, such as temperature and water, thus reflecting shock atmospheric conditions during freezing and thawing, on the properties of samples produced using 3D printing technology from commonly used materials such as ABS, HIPS, PLA, and ASA. Understanding how different environmental conditions affect the quality, reliability, and durability of 3D prints can help to optimize the printing process and provide valuable information about their application possibilities. Tests related to the strength of the materials, such as static tensile testing, Charpy impact testing, and evaluation of structures, were carried out using a scanning electron microscope (SEM). Changes in chemical properties were measured by performing tests such as FTIR and TGA. Variations in chemical properties were measured by performing tests such as FTIR and TGA. One shock cycle lasting 7 days was sufficient to alter the properties of 3D prints, with the extent of changes depending on the material, as summarized in the test results.

4.
Polymers (Basel) ; 14(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297950

RESUMO

The paper presents the characteristics of unplasticized PVC composites modified with biofiller obtained from the waste eggshells of hen eggs. The composites obtained by extrusion contained from 10 phr to 40 phr of biofiller. The filler was characterized using the SEM, TG, and sieve analysis methods. The influence of the filler on the processing properties was determined using plastographometric and MFR tests. Fundamental analysis of mechanical properties was also performed, i.e., Charpy impact strength and determination of tensile properties. The mechanical properties were supported with dynamical mechanical thermal analysis, time of thermal stability, and thermogravimetric analysis. Structure analysis was also performed using SEM and X-ray microcomputed tomography (micro-CT). The processing properties of the tested composites do not give grounds for disqualifying such material from traditional processing PVC mixtures. Notably, the biofiller significantly improves thermal stability. Ground eggshells (ES) work as scavengers for the Cl radicals released in the first stage, which delays the PVC chain's decay. Additionally, a significant increase in the value of the modulus of elasticity and softening point (VST) of the composites concerning PVC was found. Ground hen eggshells can be used as an effective filler for PVC composites.

5.
Materials (Basel) ; 14(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361391

RESUMO

Lightweight moldings obtained by microcellular injection molding (MIM) are of great significance for saving materials and reducing energy consumption. For thick-walled parts, the standard injection molding process brings some defects, including a sink mark, warpage, and high shrinkage. Polyamide 66 (PA66)/glass fiber (GF) thick-walled moldings were prepared by MuCell® technology. The influences of moldings thickness (6 and 8.4 mm) and applied nitrogen pressure (16 and 20 MPa) on the morphology and mechanical properties were studied. Finally, the microcellular structure with a small cell diameter of about 30 µm was confirmed. Despite a significant time reduction of the holding phase (to 0.3 s), high-performance PA66 GF30 foamed moldings without sink marks and warpage were obtained. The excellent strength properties and favorable impact resistance while reducing the weight of thick-walled moldings were achieved. The main reason for the good results of polyamide composite was the orientation of the fibers in the flow direction and the large number of small nitrogen cells in the core and transition zone. The structure gradient was analysed and confirmed with scanning electron microscopy (SEM) images, X-ray micro computed tomography (micro CT) and finite element method (FEM) simulation.

6.
Materials (Basel) ; 13(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266307

RESUMO

The aim of the study was to detect the influence of nitrogen pressure on the rheological properties and structure of PA66 GF30 thick-walled parts, produced by means of microcellular injection molding (MIM), using the MuCell® technology. The process was monitored in-line with pressure and temperature sensors assembled in the original injection mold. The measured data was subsequently used to evaluate rheological properties inside an 8.4 mm depth mold cavity. The analysis of the microcellular structure was related to the monitored in-line pressure and temperature changes during the injection process cycle. A four-times reduction of the maximum filling pressure in the mold cavity for MIM was found. At the same time, the holding pressure was taken over by expanding cells. The gradient effect of the cells distribution and the fiber arrangement in the flow direction were observed. A slight influence of nitrogen pressure on the cells size was found. Cells with a diameter lower than 20 µm dominate in the analyzed cases. An effect of reduction of the average cells size in the function of distance to the gate was observed. The creation of structure gradient and changes of cells dimensions were evaluated by SEM images and confirmed with the micro CT analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA