Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
ACS Nano ; 18(12): 9092-9099, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38479375

RESUMO

Experimental setups for charge transport measurements are typically not compatible with the ultrahigh vacuum conditions for chemical doping, limiting the charge carrier density that can be investigated by transport methods. Field-effect methods, including dielectric gating and ionic liquid gating, achieve too low a carrier density to induce electronic phase transitions. To bridge this gap, we developed an integrated flip-chip method to dope graphene by alkali vapor in the diffusive regime, suitable for charge transport measurements at ultrahigh charge carrier density. We introduce a cesium droplet into a sealed cavity filled with inert gas to dope a monolayer graphene sample by the process of cesium atom diffusion, adsorption, and ionization at the graphene surface, with doping beyond an electron density of 4.7 × 1014 cm-2 monitored by operando Hall measurement. The sealed assembly is stable against oxidation, enabling measurement of charge transport versus temperature and magnetic field. Cyclotron mass inversion is observed via the Hall effect, indicative of the change in Fermi surface geometry associated with the Liftshitz transition at the hyperbolic M point of monolayer graphene. The transparent quartz substrate also functions as an optical window, enabling nonresonant Raman scattering. Our findings show that chemical doping, hitherto restricted to ultrahigh vacuum, can be applied in a diffusive regime at ambient pressure in an inert gas environment and thus enable charge transport studies in standard cryogenic environments.

2.
Nanotechnology ; 34(28)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37044084

RESUMO

Violet phosphorus is a semiconducting allotrope of phosphorus with a layered crystalline structure consisting of orthogonally oriented layers of phosphorus chains composed of P2[P8]P2[P9] repeating units. Here, we report optical transmission spectroscopy and photoconductivity measurements of exfoliated flakes of violet phosphorus in the thin-film bulk limit. The violet phosphorus was synthesized by chemical vapour transport, and subsequently protected from oxidation with an inert gas environment. A peak photoconductive responsivity ofR= 7 mA W-1at photon energy 2.8 eV was observed. The spectral dependence of optical transmission and photoconductivity of violet phosphorus leads us to identify optical transitions at van Hove singularities corresponding to energiesE1= 1.80 ± 0.05 eV andE2= 1.95 ± 0.05 eV. Density functional theory was applied to the calculation of violet phosphorus (vP) bandstructure, and a dipole transition analysis shows that optical transitions at theZandA0points of the Brillouin zone are in agreement with experimental observations. Exposure to ambient environmental conditions for several minutes is sufficient to significantly reduce vP photoconductivity, while longer exposure leads to blistering due to oxidation. Thus, a locally inert chemical environment is essential to accessing vP intrinsic optoelectronic properties.

3.
Mater Horiz ; 10(7): 2638-2648, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37098724

RESUMO

Graphene oxide (GO) and reduced graphene oxide (rGO) colloidal systems can directly respond to environmental stimuli such as pH, ionic strength, and light by themselves, but not to temperature. Here we show that surface modification of rGO with polydopamine (PDA) leads to a temperature-responsive composite material, even though neither rGO nor PDA have intrinsic temperature responsiveness. Reducing GO with dopamine results in rGO/PDA flakes with hydrophilic PDA clusters attached to hydrophobic rGO domains, which mimics the amphiphilic structure of temperature responsive poly(N-isopropylacrylamide) (PNIPAM). The rGO/PDA flakes self-assemble at temperature higher than 30 °C, causing flake aggregation and precipitation in suspensions with concentration of 0.05 g L-1, which is reversible upon cooling, shaking, and re-heating. A solution-to-gelation transition occurs upon heating suspensions with concentration of 10 g L-1. Nacre-like films and porous monoliths are obtained by drying rGO/PDA suspensions at different concentrations. Films and porous monoliths obtained by drying suspensions that are previously self-assembled through heat have more compact structures compared to those obtained with suspensions that are not heated. Overall, this work introduces the concept of supramolecular temperature responsive assembly of nanomaterials (STRAN), i.e., that temperature response can be introduced in nanomaterials by combining non-responsive components that function cooperatively in supramolecules, whose interactions with solvents can be modulated by temperature changes, mimicking what happens in macromolecular systems such as PNIPAM. STRAN could be applied to nanomaterials beyond GO to develop responsive systems whose self-assembly in suspension and architectural features realized upon drying can be controlled by temperature.

4.
ACS Nano ; 16(8): 12488-12499, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35921169

RESUMO

The direct electrolysis of seawater is greatly inhibited by the oxidation of Cl- to free chlorine, an undesirable, corrosive byproduct. To suppress the parasitic interference of Cl- and any other ion, we developed a freestanding, electrically conducting, 3D macroporous reduced graphene oxide (rGO) scaffold with cobalt oxide particles selectively deposited on the internal walls of its closed pores (with an average diameter of ∼180 µm). The pore walls act as membranes composed of stacked rGO flakes; the nanochannels between rGO layers (size <1 nm) are permeable to water and gases while preventing the diffusion of dissolved ions such as Cl-. Due to this, the catalytic particles are selectively accessible to water molecules but not to ions, allowing electrolysis to occur without chlorine evolution. The electrodes developed exhibit a stable generation of O2 from simulated seawater at pH 14, reaching a specific current density of up to 25 A g-1 during continuous electrolysis with 89-98% Faradaic efficiency, while chlorine generation is below 6 ppm h-1, the sensitivity limit of the detection method employed. The strategy here proposed can be generalized to build electrodes that are inherently selective thanks to their architecture, with catalytically active particles loaded into closed pores with selective ion transport properties.

5.
Langmuir ; 38(29): 8757-8765, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35834350

RESUMO

Graphene oxide (GO) paper is an attractive material because of high stiffness and strength, light weight, and multiple functionalities. While these properties are now widely exploited in nanoinclusions or flat sheets, three-dimensional (3D) structures from GO paper are not widely studied because of a lack of suitable processing methods. In this study, we report a layered assembly method to make stiff and strong 3D GO structures with the aid of a sodium tetraborate (borax) solution. By comparing mechanical properties of assembled GO paper using water or borax solution, we found that the borax-assembled layers had the highest stiffness. To demonstrate the versatility of our assembly protocol, we then fabricated a variety of 3D structures including I-beams, cylindrical tubes, and bridge-like structures from GO paper. These GO structures were stiff and light weight, and the stiffness to mass ratio was around 2-4 times higher than other polymer samples including cellulose, fluorinated ethylene propylene, and poly(vinyl alcohol). The versatile processing method to make stiff and strong GO structures will enable new engineering applications where nonplanar GO structures are required.

6.
J Phys Condens Matter ; 34(5)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34783682

RESUMO

The mineral franckeite is a naturally occurring van der Waals superlattice which has recently attracted attention for future applications in optoelectronics, biosensors and beyond. Furthermore, its stacking of incommensurately modulated 2D layers, the pseudo tetragonal Q-layer and the pseudo hexagonal H-layer, is an experimentally accessible prototype for the development of synthetic van der Waals materials and of advanced characterization methods to reveal new insights in their structure and chemistry at the atomic scale that is crucial for deep understanding of its properties. While some experimental studies have been undertaken in the past, much is still unknown on the correlation between local atomic structure and chemical composition within the layers. Here we present an investigation of the atomic structure of franckeite using state-of-the-art high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) and atom probe tomography (APT). With atomic-number image contrast in HAADF STEM direct information about both the geometric structure and its chemistry is provided. By imaging samples under different zone axes within the van der Waals plane, we propose refinements to the structure of the Q-layer and H-layer, including several chemical ordering effects that are expected to impact electronic structure calculations. Additionally, we observe and characterize stacking faults which are possible sources of differences between experimentally determined properties and calculations. Furthermore, we demonstrate advantages and discuss current limitations and perspectives of combining TEM and APT for the atomic scale characterization of incommensurately modulated von der Waals materials.

7.
Nat Nanotechnol ; 16(8): 853-854, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34099900
8.
Nat Commun ; 12(1): 2542, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953174

RESUMO

Lateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments. The current-voltage characteristics are in agreement with calculations of tunneling conductance through asymmetric barriers. We fabricate a GNR heterojunctions based sensor and demonstrate greatly improved sensitivity to adsorbates compared to graphene based sensors. This is achieved via modulation of the GNR heterojunction tunneling barriers by adsorbates.

9.
Nanotechnology ; 32(4): 045502, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33049728

RESUMO

The discovery of the field effect in graphene initiated the development of graphene field effect transistor (FET) sensors, wherein high mobility surface conduction is readily modulated by surface adsorption. For all graphene transistor sensors, low-frequency 1/f noise determines sensor resolution, and the absolute measure of 1/f noise is thus a crucial performance metric for sensor applications. Here we report a simple method for reducing 1/f noise by scaling the active area of graphene FET sensors. We measured 1/f noise in graphene FETs with size 5 µm × 5 µm to 5.12 mm × 5.12 mm, observing more than five orders of magnitude reduction in 1/f noise. We report the lowest normalized graphene 1/f noise parameter observed to date, 5 × 10-13, and we demonstrate a sulfate ion sensor with a record resolution of 1.2 × 10-3 log molar concentration units. Our work highlights the importance of area scaling in graphene FET sensor design, wherein increased channel area improves sensor resolution.

10.
Nat Commun ; 11(1): 3226, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591504

RESUMO

Real-time, high resolution, simultaneous measurement of multiple ionic species is challenging with existing chromatographic, spectrophotometric and potentiometric techniques. Potentiometric ion sensors exhibit limitations in both resolution and selectivity. Herein, we develop wafer scale graphene transistor technology for overcoming these limitations. Large area graphene is an ideal material for high resolution ion sensitive field effect transistors (ISFETs), while simultaneously enabling facile fabrication as compared to conventional semiconductors. We develop the ISFETs into an array and apply Nikolskii-Eisenman analysis to account for cross-sensitivity and thereby achieve high selectivity. We experimentally demonstrate real-time, simultaneous concentration measurement of K+, Na+, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and Cl- with a resolution of [Formula: see text] concentration units. The array achieves an accuracy of  ±0.05 log concentration. Finally, we demonstrate real-time ion concentration measurement in an aquarium with lemnoideae lemna over three weeks, where mineral uptake by aquatic organisms can be observed during their growth.


Assuntos
Grafite/química , Eletrodos Seletivos de Íons , Transistores Eletrônicos , Ânions , Cátions , Eletrólitos/química , Concentração de Íons de Hidrogênio , Imagem Óptica , Temperatura , Fatores de Tempo
11.
Nat Nanotechnol ; 13(5): 357, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29728670

Assuntos
Semicondutores
12.
Nano Lett ; 17(6): 3738-3743, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28471682

RESUMO

Aluminum-rich AlGaN is the ideal material system for emerging solid-state deep-ultraviolet (DUV) light sources. Devices operating in the near-UV spectral range have been realized; to date, however, the achievement of high-efficiency light-emitting diodes (LEDs) operating in the UV-C band (200-280 nm specifically) has been hindered by the extremely inefficient p-type conduction in AlGaN and the lack of DUV-transparent conductive electrodes. Here, we show that these critical challenges can be addressed by Mg dopant-free Al(Ga)N/h-BN nanowire heterostructures. By exploiting the acceptor-like boron vacancy formation, we have demonstrated that h-BN can function as a highly conductive, DUV-transparent electrode; the hole concentration is ∼1020 cm-3 at room temperature, which is 10 orders of magnitude higher than that previously measured for Mg-doped AlN epilayers. We have further demonstrated the first Al(Ga)N/h-BN LED, which exhibits strong emission at ∼210 nm. This work also reports the first achievement of Mg-free III-nitride LEDs that can exhibit high electrical efficiency (80% at 20 A/cm2).

13.
Langmuir ; 31(20): 5545-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25942331

RESUMO

Graphene hydrogels/aerogels are emerging three-dimensional graphene macroscopic assemblies of potential use in many applications including energy storage, pollutant adsorption, and gas sensing. In this Letter, we identify, characterize and control the formation of the exterior shell structure of graphene hydrogels prepared via hydrothermal reduction of graphene oxide. Unlike the porous bulk of the hydrogel, the shell is a compact, highly ordered layer with a higher electrical conductivity. Shell formation is dependent upon the surface anchoring of graphene oxide at the liquid-air and liquid-container interfaces. By purposefully weakening surface anchoring of graphene oxide using mild thermal or chemical prereduction method prior to hydrothermal reduction, we have succeeded in completely suppressing shell formation in the graphene hydrogel. The resulting graphene hydrogel shows a lower volume reduction with a porous bulk structure immediately accessible from the surface, in contrast to graphene hydrogels prepared under conventional conditions.

14.
Nano Lett ; 15(4): 2263-8, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25730309

RESUMO

Hexagonal boron nitride (hBN) is a wide-gap material that has attracted significant attention as an ideal dielectric substrate for 2D crystal heterostructures. We report here the first observation of in-plane charge transport in large-area monolayer hBN, grown by chemical vapor deposition. The quadratic scaling of current with voltage at high bias corresponds to a space-charge limited conduction mechanism, with a room-temperature mobility reaching up to 0.01 cm(2)/(V s) at electric fields up to 100 kV/cm in the absence of dielectric breakdown. The observation of in-plane charge transport highlights the semiconducting nature of monolayer hBN, and identifies hBN as a wide-gap 2D crystal capable of supporting charge transport at high field. Future exploration of charge transport in hBN is motivated by the fundamental study of UV optoelectronics and the massive Dirac fermion spectrum of hBN.

15.
Nanoscale ; 6(12): 6710-9, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24821216

RESUMO

We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted truncated bipyramids, bonded to graphene via the {100} facets. Belted truncated bipyramids formed on unfunctionalized GNP too, however the NPs were more irregular and rounded. These effects were ascribed to pH variations in the proximity of the functionalized GNP sheets, due to the high density of COOH or NH2 groups. Because of the different reactivity of anatase {100} and {101} crystalline facets, we hypothesize that the hybrid materials will behave differently as photocatalysts, and that the COOH-GNP-TiO2 hybrids will be better photocatalysts for water splitting and H2 production.

16.
Opt Express ; 21(21): 25356-63, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150377

RESUMO

Terahertz plasmons and magnetoplasmons propagating along electrically and chemically doped graphene p-n junctions are investigated. It is shown that such junctions support non-reciprocal magnetoplasmonic modes which get concentrated at the middle of the junction in one direction and split away from the middle of the junction in the other direction under the application of an external static magnetic field. This phenomenon follows from the combined effects of circular birefringence and carrier density non-uniformity. It can be exploited for the realization of plasmonic isolators.

17.
Langmuir ; 28(36): 13042-50, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22866918

RESUMO

Composites of tin nanoparticles (Sn NP) and graphene are candidate materials for high capacity and mechanically stable negative electrodes in rechargeable Li ion batteries. A uniform dispersion of Sn NP with controlled size is necessary to obtain high electrochemical performance. We show that the nucleation of Sn particles on highly ordered pyrolitic graphite (HOPG) from solution can be controlled by functionalizing the HOPG surface by aryl groups prior to Sn deposition. On the contrary, we observe heterogeneous deposition of micrometer sized Sn islands on HOPG subjected to oxidation prior to deposition in the same conditions. We demonstrate that functional groups act as nucleation sites for Sn NP nucleation, and that homogeneous nucleation of small particles can be achieved by combining surface functionalization with diazonium chemistry and appropriate stabilizers in solution.

18.
Phys Rev Lett ; 106(17): 176801, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21635055

RESUMO

The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.

19.
Nano Lett ; 11(1): 132-7, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21141990

RESUMO

Graphene field effect transistors (FETs) are extremely sensitive to gas exposure. Charge transfer doping of graphene FETs by atmospheric gas is ubiquitous but not yet understood. We have used graphene FETs to probe minute changes in electrochemical potential during high-purity gas exposure experiments. Our study shows quantitatively that electrochemistry involving adsorbed water, graphene, and the substrate is responsible for doping. We not only identify the water/oxygen redox couple as the underlying mechanism but also capture the kinetics of this reaction. The graphene FET is highlighted here as an extremely sensitive potentiometer for probing electrochemical reactions at interfaces, arising from the unique density of states of graphene. This work establishes a fundamental basis on which new electrochemical nanoprobes and gas sensors can be developed with graphene.


Assuntos
Grafite/química , Oxigênio/química , Água/química , Eletroquímica , Transporte de Elétrons , Oxirredução , Transistores Eletrônicos
20.
Opt Lett ; 35(20): 3336-8, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20967058

RESUMO

An ellipsometer with 3µm×5µm spot size constructed with a single focusing and imaging element is used to measure the layer number of exfoliated graphene on glass and expitaxial graphene on SiC. Ellipsometric sensitivity to graphene layer number increases with decreasing layer number and decreasing substrate refractive index. Single-atomic-layer sensitivity has been achieved. High spatial resolution imaging and ellipsometry is useful for rapid characterization of epitaxially grown graphene films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA