Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nucleic Acids Res ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258536

RESUMO

Muscleblind like splicing regulators (MBNLs) govern various RNA-processing steps, including alternative splicing, polyadenylation, RNA stability and mRNA intracellular localization. In myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults, MBNLs are sequestered on toxic RNA containing expanded CUG repeats, which leads to disruption of MBNL-regulated processes and disease features of DM1. Herein, we show the significance of MBNLs in regulating microtranscriptome dynamics during the postnatal development of skeletal muscles and in microRNA (miRNA) misregulation observed in mouse models and patients with DM1. We identify multiple miRNAs sensitive to MBNL proteins insufficiency and reveal that many of them were postnatally regulated, which correlates with increases in the activity of these proteins during this process. In adult Mbnl1-knockout mice, miRNA expression exhibited an adult-to-newborn shift. We hypothesize that Mbnl1 deficiency influences miRNA levels through a combination of mechanisms. First, the absence of Mbnl1 protein results in alterations to the levels of pri-miRNAs. Second, MBNLs affect miRNA biogenesis by regulating the alternative splicing of miRNA primary transcripts. We propose that the expression of miR-23b, miR-27b and miR-24-1, produced from the same cluster, depends on the MBNL-sensitive inclusion of alternative exons containing miRNA sequences. Our findings suggest that MBNL sequestration in DM1 is partially responsible for altered miRNA activity. This study provides new insights into the biological roles and functions of MBNL proteins as regulators of miRNA expression in skeletal muscles.

2.
Cell Mol Life Sci ; 80(11): 335, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882878

RESUMO

Muscleblind-like splicing regulators (MBNLs) activate or repress the inclusion of alternative splicing (AS) events, enabling the developmental transition of fetal mRNA splicing isoforms to their adult forms. Herein, we sought to elaborate the mechanism by which MBNLs mediate AS related to biological processes. We evaluated the functional role of DEAD-box (DDX) RNA helicases, DDX5 and DDX17 in MBNL-dependent AS regulation. Whole-transcriptome analysis and validation approaches revealed a handful of MBNLs-dependent AS events to be affected by DDX5 and DDX17 in mostly an opposite manner. The opposite expression patterns of these two groups of factors during muscle development and coordination of fetal-to-adult splicing transition indicate the importance of these proteins at early stages of development. The identified pathways of how the helicases modulate MBNL splicing activity include DDX5 and DDX17-dependent changes in the ratio of MBNL splicing isoforms and most likely changes in accessibility of MBNL-binding sites. Another pathway involves the mode of action of the helicases independent of MBNL activity. These findings lead to a deeper understanding of the network of interdependencies between RNA-binding proteins and constitute a valuable element in the discussion on developmental homeostasis and pathological states in which the studied protein factors play a significant role.


Assuntos
Processamento Alternativo , RNA Helicases , Processamento Alternativo/genética , RNA Helicases/genética , Splicing de RNA , Isoformas de Proteínas/genética , Sítios de Ligação/genética
3.
Brain ; 146(10): 4217-4232, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37143315

RESUMO

Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.


Assuntos
Distrofia Miotônica , Humanos , Feminino , Camundongos , Animais , Distrofia Miotônica/genética , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , RNA/genética , Camundongos Knockout , Expansão das Repetições de Trinucleotídeos
4.
Nat Biomed Eng ; 5(2): 157-168, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32929188

RESUMO

Myotonic dystrophy type I (DM1) is a multisystemic autosomal-dominant inherited human disorder that is caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of DMPK. Toxic RNAs expressed from such repetitive sequences can be eliminated using CRISPR-mediated RNA targeting, yet evidence of its in vivo efficacy and durability is lacking. Here, using adult and neonatal mouse models of DM1, we show that intramuscular or systemic injections of adeno-associated virus (AAV) vectors encoding nuclease-dead Cas9 and a single-guide RNA targeting CUG repeats results in the expression of the RNA-targeting Cas9 for up to three months, redistribution of the RNA-splicing protein muscleblind-like splicing regulator 1, elimination of foci of toxic RNA, reversal of splicing biomarkers and amelioration of myotonia. The sustained reversal of DM1 phenotypes provides further support that RNA-targeting Cas9 is a viable strategy for treating DM1 and other MRE-associated diseases.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes/métodos , Distrofia Miotônica/metabolismo , RNA/metabolismo , Adenoviridae/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Vetores Genéticos/fisiologia , Masculino , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Fenótipo
5.
Nat Commun ; 11(1): 2022, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332745

RESUMO

The thymus is a primary lymphoid organ that plays an essential role in T lymphocyte maturation and selection during development of one arm of the mammalian adaptive immune response. Although transcriptional mechanisms have been well documented in thymocyte development, co-/post-transcriptional modifications are also important but have received less attention. Here we demonstrate that the RNA alternative splicing factor MBNL1, which is sequestered in nuclear RNA foci by C(C)UG microsatellite expansions in myotonic dystrophy (DM), is essential for normal thymus development and function. Mbnl1 129S1 knockout mice develop postnatal thymic hyperplasia with thymocyte accumulation. Transcriptome analysis indicates numerous gene expression and RNA mis-splicing events, including transcription factors from the TCF/LEF family. CNBP, the gene containing an intronic CCTG microsatellite expansion in DM type 2 (DM2), is coordinately expressed with MBNL1 in the developing thymus and DM2 CCTG expansions induce similar transcriptome alterations in DM2 blood, which thus serve as disease-specific biomarkers.


Assuntos
Proteínas de Ligação a DNA/genética , Distrofia Miotônica/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Timo/crescimento & desenvolvimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Íntrons/genética , Masculino , Camundongos , Camundongos Knockout , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Distrofia Miotônica/sangue , Distrofia Miotônica/imunologia , Splicing de RNA/imunologia , RNA-Seq , Timo/imunologia , Adulto Jovem
6.
Genes Dev ; 33(23-24): 1635-1640, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31624084

RESUMO

Short tandem repeats (STRs) are prone to expansion mutations that cause multiple hereditary neurological and neuromuscular diseases. To study pathomechanisms using mouse models that recapitulate the tissue specificity and developmental timing of an STR expansion gene, we used rolling circle amplification and CRISPR/Cas9-mediated genome editing to generate Dmpk CTG expansion (CTGexp) knockin models of myotonic dystrophy type 1 (DM1). We demonstrate that skeletal muscle myoblasts and brain choroid plexus epithelial cells are particularly susceptible to Dmpk CTGexp mutations and RNA missplicing. Our results implicate dysregulation of muscle regeneration and cerebrospinal fluid homeostasis as early pathogenic events in DM1.


Assuntos
Processamento Alternativo/genética , Repetições de Microssatélites/genética , Músculo Esquelético/fisiopatologia , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , Splicing de RNA/genética , Regiões 3' não Traduzidas/genética , Animais , Plexo Corióideo/fisiopatologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/citologia , Mutação , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Proteínas de Ligação a RNA/genética
7.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323950

RESUMO

Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant DMPK (DM1) and CNBP (DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUGexp, CCUGexp) RNAs, respectively. These CUGexp and CCUGexp RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.


Assuntos
Processamento Alternativo/genética , Repetições de Microssatélites/genética , Distrofia Miotônica/genética , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Músculo Esquelético/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
8.
Nucleic Acids Res ; 46(17): 9119-9133, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955876

RESUMO

Muscleblind-like (MBNL) proteins are conserved RNA-binding factors involved in alternative splicing (AS) regulation during development. While AS is controlled by distribution of MBNL paralogs and isoforms, the affinity of these proteins for specific RNA-binding regions and their location within transcripts, it is currently unclear how RNA structure impacts MBNL-mediated AS regulation. Here, we defined the RNA structural determinants affecting MBNL-dependent AS activity using both cellular and biochemical assays. While enhanced inclusion of MBNL-regulated alternative exons is controlled by the arrangement and number of MBNL binding sites within unstructured RNA, when these sites are embedded in a RNA hairpin MBNL binds preferentially to one side of stem region. Surprisingly, binding of MBNL proteins to RNA targets did not entirely correlate with AS efficiency. Moreover, comparison of MBNL proteins revealed structure-dependent competitive behavior between the paralogs. Our results showed that the structure of targeted RNAs is a prevalent component of the mechanism of alternative splicing regulation by MBNLs.


Assuntos
Processamento Alternativo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Sequência de Bases , Sítios de Ligação/genética , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HeLa , Humanos , Camundongos , Ligação Proteica , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/química
9.
Proc Natl Acad Sci U S A ; 115(16): 4234-4239, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610297

RESUMO

Expansions of simple sequence repeats, or microsatellites, have been linked to ∼30 neurological-neuromuscular diseases. While these expansions occur in coding and noncoding regions, microsatellite sequence and repeat length diversity is more prominent in introns with eight different trinucleotide to hexanucleotide repeats, causing hereditary diseases such as myotonic dystrophy type 2 (DM2), Fuchs endothelial corneal dystrophy (FECD), and C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we test the hypothesis that these GC-rich intronic microsatellite expansions selectively trigger host intron retention (IR). Using DM2, FECD, and C9-ALS/FTD as examples, we demonstrate that retention is readily detectable in affected tissues and peripheral blood lymphocytes and conclude that IR screening constitutes a rapid and inexpensive biomarker for intronic repeat expansion disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Distrofia Endotelial de Fuchs/genética , Íntrons/genética , Distrofia Miotônica/genética , Composição de Bases , Biomarcadores , Humanos , Linfócitos/química , Músculo Esquelético/química , Miocárdio/química , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Análise Serial de Tecidos
10.
Compr Physiol ; 8(2): 509-553, 2018 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29687899

RESUMO

Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Distrofia Miotônica/genética , Proteínas de Ligação a RNA/genética , Animais , Humanos , Desenvolvimento Muscular/genética , Músculo Esquelético/patologia , Mutação , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/patologia , Distrofia Miotônica/fisiopatologia , Linhagem
11.
Sci Rep ; 7(1): 17587, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242583

RESUMO

Alternative splicing is a complex process that provides a high diversity of proteins from a limited number of protein-coding genes. It is governed by multiple regulatory factors, including RNA-binding proteins (RBPs), that bind to specific RNA sequences embedded in a specific structure. The ability to predict RNA-binding regions recognized by RBPs using whole-transcriptome approaches can deliver a multitude of data, including false-positive hits. Therefore, validation of the global results is indispensable. Here, we report the development of an efficient and rapid approach based on a modular hybrid minigene combined with antisense oligonucleotides to enable verification of functional RBP-binding sites within intronic and exonic sequences of regulated pre-mRNA. This approach also provides valuable information regarding the regulatory properties of pre-mRNA, including the RNA secondary structure context. We also show that the developed approach can be used to effectively identify or better characterize the inhibitory properties of potential therapeutic agents for myotonic dystrophy, which is caused by sequestration of specific RBPs, known as muscleblind-like proteins, by mutated RNA with expanded CUG repeats.


Assuntos
Processamento Alternativo , Oligonucleotídeos Antissenso/genética , Proteínas de Ligação a RNA/metabolismo , RNA/genética , RNA/metabolismo , Animais , Sequência de Bases , Éxons/genética , Perfilação da Expressão Gênica , Células HeLa , Humanos , Íntrons/genética , Camundongos , Ligação Proteica
12.
Genes Dev ; 31(11): 1122-1133, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698297

RESUMO

Myotonic dystrophy type 1 (DM1) is a CTG microsatellite expansion (CTGexp) disorder caused by expression of CUGexp RNAs. These mutant RNAs alter the activities of RNA processing factors, including MBNL proteins, leading to re-expression of fetal isoforms in adult tissues and DM1 pathology. While this pathogenesis model accounts for adult-onset disease, the molecular basis of congenital DM (CDM) is unknown. Here, we test the hypothesis that disruption of developmentally regulated RNA alternative processing pathways contributes to CDM disease. We identify prominent alternative splicing and polyadenylation abnormalities in infant CDM muscle, and, although most are also misregulated in adult-onset DM1, dysregulation is significantly more severe in CDM. Furthermore, analysis of alternative splicing during human myogenesis reveals that CDM-relevant exons undergo prenatal RNA isoform transitions and are predicted to be disrupted by CUGexp-associated mechanisms in utero. To test this possibility and the contribution of MBNLs to CDM pathogenesis, we generated mouse Mbnl double (Mbnl1; Mbnl2) and triple (Mbnl1; Mbnl2; Mbnl3) muscle-specific knockout models that recapitulate the congenital myopathy, gene expression, and spliceopathy defects characteristic of CDM. This study demonstrates that RNA misprocessing is a major pathogenic factor in CDM and provides novel mouse models to further examine roles for cotranscriptional/post-transcriptional gene regulation during development.


Assuntos
Desenvolvimento Muscular/genética , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Animais , Proteínas de Transporte/genética , Células Cultivadas , Pré-Escolar , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Humanos , Lactente , Camundongos , Proteínas de Ligação a RNA/metabolismo
13.
Nucleic Acids Res ; 45(4): 1760-1775, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27903900

RESUMO

Muscleblind-like proteins (MBNLs) are regulators of RNA metabolism. During tissue differentiation the level of MBNLs increases, while their functional insufficiency plays a crucial role in myotonic dystrophy (DM). Deep sequencing of RNA molecules cross-linked to immunoprecipitated protein particles (CLIP-seq) revealed that MBNL1 binds to MBNL1 exon 1 (e1) encoding both the major part of 5΄UTR and an amino-terminal region of MBNL1 protein. We tested several hypotheses regarding the possible autoregulatory function of MBNL1 binding to its own transcript. Our data indicate that MBNLs induce skipping of e1 from precursor MBNL1 mRNA and that e1 exclusion may impact transcript association with polysomes and translation. Furthermore, e1-deficient protein isoform lacking the first two zinc fingers is highly unstable and its EGFP fusion protein has severely compromised splicing activity. We also show that MBNL1 can be transcribed from three different promoters and that the transcription initiation site determines the mode of e1 regulation. Taken together, we demonstrate that MBNL proteins control steady-state levels of MBNL1 through an interaction with e1 in its precursor mRNA. Insights from our study open a new avenue in therapies against DM based on manipulation of the transcription initiation site and e1 splicing of MBNL1 mRNA.


Assuntos
Processamento Alternativo , Éxons , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Camundongos , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade Proteica , Isoformas de RNA , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo
14.
Nucleic Acids Res ; 44(21): 10326-10342, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733504

RESUMO

Muscleblind-like (MBNL) proteins are critical RNA processing factors in development. MBNL activity is disrupted in the neuromuscular disease myotonic dystrophy type 1 (DM1), due to the instability of a non-coding microsatellite in the DMPK gene and the expression of CUG expansion (CUGexp) RNAs. Pathogenic interactions between MBNL and CUGexp RNA lead to the formation of nuclear complexes termed foci and prevent MBNL function in pre-mRNA processing. The existence of multiple MBNL genes, as well as multiple protein isoforms, raises the question of whether different MBNL proteins possess unique or redundant functions. To address this question, we coexpressed three MBNL paralogs in cells at equivalent levels and characterized both specific and redundant roles of these proteins in alternative splicing and RNA foci dynamics. When coexpressed in the same cells, MBNL1, MBNL2 and MBNL3 bind the same RNA motifs with different affinities. While MBNL1 demonstrated the highest splicing activity, MBNL3 showed the lowest. When forming RNA foci, MBNL1 is the most mobile paralog, while MBNL3 is rather static and the most densely packed on CUGexp RNA. Therefore, our results demonstrate that MBNL paralogs and gene-specific isoforms possess inherent functional differences, an outcome that could be enlisted to improve therapeutic strategies for DM1.


Assuntos
Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Sítios de Ligação , Linhagem Celular , Éxons , Humanos , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Transporte Proteico , RNA/química , RNA/metabolismo , Isoformas de RNA , Proteínas de Ligação a RNA/química
15.
Nucleic Acids Res ; 43(6): 3318-31, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25753670

RESUMO

Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of CTG triplet repeats in 3'-untranslated region of DMPK gene. The pathomechanism of DM1 is driven by accumulation of toxic transcripts containing expanded CUG repeats (CUG(exp)) in nuclear foci which sequester several factors regulating RNA metabolism, such as Muscleblind-like proteins (MBNLs). In this work, we utilized very short chemically modified antisense oligonucleotides composed exclusively of locked nucleic acids (all-LNAs) complementary to CUG repeats, as potential therapeutic agents against DM1. Our in vitro data demonstrated that very short, 8- or 10-unit all-LNAs effectively bound the CUG repeat RNA and prevented the formation of CUG(exp)/MBNL complexes. In proliferating DM1 cells as well as in skeletal muscles of DM1 mouse model the all-LNAs induced the reduction of the number and size of CUG(exp) foci and corrected MBNL-sensitive alternative splicing defects with high efficacy and specificity. The all-LNAs had low impact on the cellular level of CUG(exp)-containing transcripts and did not affect the expression of other transcripts with short CUG repeats. Our data strongly indicate that short all-LNAs complementary to CUG repeats are a promising therapeutic tool against DM1.


Assuntos
Processamento Alternativo , Distrofia Miotônica/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos/uso terapêutico , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/genética , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Expansão das Repetições de Trinucleotídeos
16.
ACS Chem Biol ; 7(3): 496-505, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22252896

RESUMO

Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)(exp)) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5'CAG/3'GAC motif found in r(CAG)(exp) hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)(exp). The compound was identified by first studying the binding of RNA 1 × 1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5'CAG/3'GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate, a small molecule that improves pre-mRNA splicing defects associated with the r(CAG)(exp)-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)(exp) and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)(exp) toxicity. The approach used in these studies, defining the small RNA motifs that bind small molecules with known affinity for nucleic acids and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in the human genomic sequence.


Assuntos
Benzoatos/farmacologia , Guanidinas/farmacologia , Splicing de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/genética , Repetições de Trinucleotídeos/genética , Benzoatos/química , Guanidinas/química , Humanos , Hibridização in Situ Fluorescente , Ligantes , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/química , RNA Mensageiro/efeitos dos fármacos , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos , Repetições de Trinucleotídeos/efeitos dos fármacos , Células Tumorais Cultivadas
17.
BMC Mol Biol ; 12: 14, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21481235

RESUMO

BACKGROUND: Numerous microRNAs (miRNAs) have heterogeneous ends resulting from imprecise cleavages by processing nucleases and from various non-templated nucleotide additions. The scale of miRNA end-heterogeneity is best shown by deep sequencing data revealing not only the major miRNA variants but also those that occur in only minute amounts and are unlikely to be of functional importance. All RNA interference (RNAi) technology reagents that are expressed and processed in cells are also exposed to the same machinery generating end-heterogeneity of the released short interfering RNAs (siRNAs) or miRNA mimetics. RESULTS: In this study we have analyzed endogenous and exogenous RNAs in the range of 20-70 nt by high-resolution northern blotting. We have validated the results obtained with northern blotting by comparing them with data derived from miRNA deep sequencing; therefore we have demonstrated the usefulness of the northern blotting technique in the investigation of miRNA biogenesis, as well as in the characterization of RNAi technology reagents. CONCLUSIONS: The conventional northern blotting enhanced to high resolution may be a useful adjunct to other miRNA discovery, detection and characterization methods. It provides quantitative data on distribution of major length variants of abundant endogenous miRNAs, as well as on length heterogeneity of RNAi technology reagents expressed in cells.


Assuntos
MicroRNAs/análise , Interferência de RNA , Precursores de RNA/análise , Animais , Northern Blotting , Células HEK293 , Humanos , Camundongos , MicroRNAs/química , MicroRNAs/metabolismo , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA