Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell Rep ; 42(7): 112715, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405913

RESUMO

Maintenance of protein homeostasis degrades with age, contributing to aging-related decline and disease. Previous studies have primarily surveyed transcriptional aging changes. To define the effects of age directly at the protein level, we perform discovery-based proteomics in 10 tissues from 20 C57BL/6J mice, representing both sexes at adult and late midlife ages (8 and 18 months). Consistent with previous studies, age-related changes in protein abundance often have no corresponding transcriptional change. Aging results in increases in immune proteins across all tissues, consistent with a global pattern of immune infiltration with age. Our protein-centric data reveal tissue-specific aging changes with functional consequences, including altered endoplasmic reticulum and protein trafficking in the spleen. We further observe changes in the stoichiometry of protein complexes with important roles in protein homeostasis, including the CCT/TriC complex and large ribosomal subunit. These data provide a foundation for understanding how proteins contribute to systemic aging across tissues.


Assuntos
Proteoma , Proteostase , Masculino , Feminino , Animais , Camundongos , Proteoma/metabolismo , Camundongos Endogâmicos C57BL , Envelhecimento/metabolismo
2.
Cell Metab ; 34(1): 140-157.e8, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34861155

RESUMO

Uncoupling protein 1 (UCP1) is a major regulator of brown and beige adipocyte energy expenditure and metabolic homeostasis. However, the widely employed UCP1 loss-of-function model has recently been shown to have a severe deficiency in the entire electron transport chain of thermogenic fat. As such, the role of UCP1 in metabolic regulation in vivo remains unclear. We recently identified cysteine-253 as a regulatory site on UCP1 that elevates protein activity upon covalent modification. Here, we examine the physiological importance of this site through the generation of a UCP1 cysteine-253-null (UCP1 C253A) mouse, a precise genetic model for selective disruption of UCP1 in vivo. UCP1 C253A mice exhibit significantly compromised thermogenic responses in both males and females but display no measurable effect on fat accumulation in an obesogenic environment. Unexpectedly, we find that a lack of C253 results in adipose tissue redox stress, which drives substantial immune cell infiltration and systemic inflammatory pathology in adipose tissues and liver of male, but not female, mice. Elevation of systemic estrogen reverses this male-specific pathology, providing a basis for protection from inflammation due to loss of UCP1 C253 in females. Together, our results establish the UCP1 C253 activation site as a regulator of acute thermogenesis and sex-dependent tissue inflammation.


Assuntos
Tecido Adiposo Marrom , Cisteína , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Cisteína/metabolismo , Metabolismo Energético , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Nat Metab ; 3(5): 604-617, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34002097

RESUMO

Non-alcoholic fatty liver disease (NAFLD), the most prevalent liver pathology worldwide, is intimately linked with obesity and type 2 diabetes. Liver inflammation is a hallmark of NAFLD and is thought to contribute to tissue fibrosis and disease pathogenesis. Uncoupling protein 1 (UCP1) is exclusively expressed in brown and beige adipocytes, and has been extensively studied for its capacity to elevate thermogenesis and reverse obesity. Here we identify an endocrine pathway regulated by UCP1 that antagonizes liver inflammation and pathology, independent of effects on obesity. We show that, without UCP1, brown and beige fat exhibit a diminished capacity to clear succinate from the circulation. Moreover, UCP1KO mice exhibit elevated extracellular succinate in liver tissue that drives inflammation through ligation of its cognate receptor succinate receptor 1 (SUCNR1) in liver-resident stellate cell and macrophage populations. Conversely, increasing brown and beige adipocyte content in mice antagonizes SUCNR1-dependent inflammatory signalling in the liver. We show that this UCP1-succinate-SUCNR1 axis is necessary to regulate liver immune cell infiltration and pathology, and systemic glucose intolerance in an obesogenic environment. As such, the therapeutic use of brown and beige adipocytes and UCP1 extends beyond thermogenesis and may be leveraged to antagonize NAFLD and SUCNR1-dependent liver inflammation.


Assuntos
Suscetibilidade a Doenças , Hepatite/etiologia , Hepatite/metabolismo , Ácido Succínico/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Espaço Extracelular/metabolismo , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Hepatite/patologia , Humanos , Redes e Vias Metabólicas , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33961781

RESUMO

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Proteoma/genética , Biologia Computacional/métodos , Células HCT116/metabolismo , Células HEK293/metabolismo , Humanos , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas/fisiologia , Proteoma/metabolismo , Proteômica/métodos
5.
J Biol Chem ; 296: 100153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33277362

RESUMO

Familial neurodegenerative diseases commonly involve mutations that result in either aberrant proteins or dysfunctional components of the proteolytic machinery that act on aberrant proteins. UBQLN2 is a ubiquitin receptor of the UBL/UBA family that binds the proteasome through its ubiquitin-like domain and is thought to deliver ubiquitinated proteins to proteasomes for degradation. UBQLN2 mutations result in familial amyotrophic lateral sclerosis (ALS)/frontotemporal dementia in humans through an unknown mechanism. Quantitative multiplexed proteomics was used to provide for the first time an unbiased and global analysis of the role of Ubqln2 in controlling the composition of the proteome. We studied several murine models of Ubqln2-linked ALS and also generated Ubqln2 null mutant mice. We identified impacts of Ubqln2 on diverse physiological pathways, most notably serotonergic signaling. Interestingly, we observed an upregulation of proteasome subunits, suggesting a compensatory response to diminished proteasome output. Among the specific proteins whose abundance is linked to UBQLN2 function, the strongest hits were the ubiquitin ligase TRIM32 and two retroelement-derived proteins, PEG10 and CXX1B. Cycloheximide chase studies using induced human neurons and HEK293 cells suggested that PEG10 and TRIM32 are direct clients. Although UBQLN2 directs the degradation of multiple proteins via the proteasome, it surprisingly conferred strong protection from degradation on the Gag-like protein CXX1B, which is expressed from the same family of retroelement genes as PEG10. In summary, this study charts the proteomic landscape of ALS-related Ubqln2 mutants and identifies candidate client proteins that are altered in vivo in disease models and whose degradation is promoted by UBQLN2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/genética , Proteínas Relacionadas à Autofagia/genética , Demência Frontotemporal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular , Cicloeximida/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33242424

RESUMO

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteogenômica , Neoplasias Encefálicas/imunologia , Criança , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Glioma/genética , Glioma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Mutação/genética , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Fosfoproteínas/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
7.
Proc Natl Acad Sci U S A ; 117(20): 10789-10796, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358195

RESUMO

Oxidation of cysteine thiols by physiological reactive oxygen species (ROS) initiates thermogenesis in brown and beige adipose tissues. Cellular selenocysteines, where sulfur is replaced with selenium, exhibit enhanced reactivity with ROS. Despite their critical roles in physiology, methods for broad and direct detection of proteogenic selenocysteines are limited. Here we developed a mass spectrometric method to interrogate incorporation of selenium into proteins. Unexpectedly, this approach revealed facultative incorporation of selenium as selenocysteine or selenomethionine into proteins that lack canonical encoding for selenocysteine. Selenium was selectively incorporated into regulatory sites on key metabolic proteins, including as selenocysteine-replacing cysteine at position 253 in uncoupling protein 1 (UCP1). This facultative utilization of selenium was initiated by increasing cellular levels of organic, but not inorganic, forms of selenium. Remarkably, dietary selenium supplementation elevated facultative incorporation into UCP1, elevated energy expenditure through thermogenic adipose tissue, and protected against obesity. Together, these findings reveal the existence of facultative protein selenation, which correlates with impacts on thermogenic adipocyte function and presumably other biological processes as well.


Assuntos
Tecido Adiposo/metabolismo , Cisteína/metabolismo , Obesidade/metabolismo , Selênio/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo , Tecido Adiposo/fisiologia , Animais , Células Cultivadas , Masculino , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
8.
Cell ; 180(5): 968-983.e24, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109415

RESUMO

Mammalian tissues engage in specialized physiology that is regulated through reversible modification of protein cysteine residues by reactive oxygen species (ROS). ROS regulate a myriad of biological processes, but the protein targets of ROS modification that drive tissue-specific physiology in vivo are largely unknown. Here, we develop Oximouse, a comprehensive and quantitative mapping of the mouse cysteine redox proteome in vivo. We use Oximouse to establish several paradigms of physiological redox signaling. We define and validate cysteine redox networks within each tissue that are tissue selective and underlie tissue-specific biology. We describe a common mechanism for encoding cysteine redox sensitivity by electrostatic gating. Moreover, we comprehensively identify redox-modified disease networks that remodel in aged mice, establishing a systemic molecular basis for the long-standing proposed links between redox dysregulation and tissue aging. We provide the Oximouse compendium as a framework for understanding mechanisms of redox regulation in physiology and aging.


Assuntos
Envelhecimento/genética , Cisteína/genética , Proteínas/genética , Proteoma/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Cisteína/metabolismo , Humanos , Camundongos , Especificidade de Órgãos/genética , Oxirredução , Estresse Oxidativo/genética , Proteômica/métodos , Espécies Reativas de Oxigênio , Transdução de Sinais/genética
9.
Cell ; 180(2): 387-402.e16, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978347

RESUMO

Proteins are essential agents of biological processes. To date, large-scale profiling of cell line collections including the Cancer Cell Line Encyclopedia (CCLE) has focused primarily on genetic information whereas deep interrogation of the proteome has remained out of reach. Here, we expand the CCLE through quantitative profiling of thousands of proteins by mass spectrometry across 375 cell lines from diverse lineages to reveal information undiscovered by DNA and RNA methods. We observe unexpected correlations within and between pathways that are largely absent from RNA. An analysis of microsatellite instable (MSI) cell lines reveals the dysregulation of specific protein complexes associated with surveillance of mutation and translation. These and other protein complexes were associated with sensitivity to knockdown of several different genes. These data in conjunction with the wider CCLE are a broad resource to explore cellular behavior and facilitate cancer research.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/metabolismo , Proteoma/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Espectrometria de Massas/métodos , Instabilidade de Microssatélites , Mutação/genética , Proteômica/métodos
10.
Mol Metab ; 12: 25-38, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29661693

RESUMO

OBJECTIVE: The inappropriate release of free fatty acids from obese adipose tissue stores has detrimental effects on metabolism, but key molecular mechanisms controlling FFA release from adipocytes remain undefined. Although obesity promotes systemic inflammation, we find activation of the inflammation-associated Mitogen Activated Protein kinase ERK occurs specifically in adipose tissues of obese mice, and provide evidence that adipocyte ERK activation may explain exaggerated adipose tissue lipolysis observed in obesity. METHODS AND RESULTS: We provide genetic and pharmacological evidence that inhibition of the MEK/ERK pathway in human adipose tissue, mice, and flies all effectively limit adipocyte lipolysis. In complementary findings, we show that genetic and obesity-mediated activation of ERK enhances lipolysis, whereas adipose tissue specific knock-out of ERK2, the exclusive ERK1/2 protein in adipocytes, dramatically impairs lipolysis in explanted mouse adipose tissue. In addition, acute inhibition of MEK/ERK signaling also decreases lipolysis in adipose tissue and improves insulin sensitivity in obese mice. Mice with decreased rates of adipose tissue lipolysis in vivo caused by either MEK or ATGL pharmacological inhibition were unable to liberate sufficient White Adipose Tissue (WAT) energy stores to fuel thermogenesis from brown fat during a cold temperature challenge. To identify a molecular mechanism controlling these actions, we performed unbiased phosphoproteomic analysis of obese adipose tissue at different time points following acute pharmacological MEK/ERK inhibition. MEK/ERK inhibition decreased levels of adrenergic signaling and caused de-phosphorylation of the ß3-adrenergic receptor (ß3AR) on serine 247. To define the functional implications of this phosphorylation, we showed that CRISPR/Cas9 engineered cells expressing wild type ß3AR exhibited ß3AR phosphorylation by ERK2 and enhanced lipolysis, but this was not seen when serine 247 of ß3AR was mutated to alanine. CONCLUSION: Taken together, these data suggest that ERK activation in adipocytes and subsequent phosphorylation of the ß3AR on S247 are critical regulatory steps in the enhanced adipocyte lipolysis of obesity.


Assuntos
Adipócitos Brancos/metabolismo , Lipólise , Sistema de Sinalização das MAP Quinases , Obesidade/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Células 3T3 , Animais , Drosophila melanogaster , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Receptores Adrenérgicos beta 3/química , Serina/metabolismo
11.
Nature ; 556(7699): 113-117, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29590092

RESUMO

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Assuntos
Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Succinatos/metabolismo , Alquilação , Animais , Carboxiliases , Bovinos , Cisteína/química , Cisteína/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Hidroliases/biossíntese , Interferon beta/imunologia , Interferon beta/farmacologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas/metabolismo , Ratos , Ratos Wistar , Succinatos/química
12.
Proc Natl Acad Sci U S A ; 114(30): 7981-7986, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28630339

RESUMO

Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology.


Assuntos
Aclimatação/fisiologia , Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Transporte de Elétrons , Proteína Desacopladora 1/deficiência , Animais , Cálcio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 1/genética
13.
Nature ; 545(7655): 505-509, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514442

RESUMO

The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidating how genome variation contributes to disease. Here we present BioPlex 2.0 (Biophysical Interactions of ORFeome-derived complexes), which uses robust affinity purification-mass spectrometry methodology to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein-coding genes from the human genome, and constitutes, to our knowledge, the largest such network so far. With more than 56,000 candidate interactions, BioPlex 2.0 contains more than 29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering of interacting proteins identified more than 1,300 protein communities representing diverse cellular activities. Genes essential for cell fitness are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2,000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization.


Assuntos
Bases de Dados de Proteínas , Doença , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteoma/metabolismo , Fenômenos Fisiológicos Celulares/genética , Genoma Humano , Humanos , Espaço Intracelular/metabolismo , Cadeias de Markov , Espectrometria de Massas , Anotação de Sequência Molecular , Fases de Leitura Aberta , Proteoma/análise , Proteoma/química , Proteoma/genética
15.
Nature ; 532(7597): 112-6, 2016 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027295

RESUMO

Brown and beige adipose tissues can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1). Thermogenesis from these adipocytes can combat obesity and diabetes, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Here we show that acutely activated thermogenesis in brown adipose tissue is defined by a substantial increase in levels of mitochondrial reactive oxygen species (ROS). Remarkably, this process supports in vivo thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole-body energy expenditure. We further establish that thermogenic ROS alter the redox status of cysteine thiols in brown adipose tissue to drive increased respiration, and that Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine-nucleotide-inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify mitochondrial ROS induction in brown adipose tissue as a mechanism that supports UCP1-dependent thermogenesis and whole-body energy expenditure, which opens the way to improved therapeutic strategies for combating metabolic disorders.


Assuntos
Cisteína/química , Metabolismo Energético , Canais Iônicos/química , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Termogênese , Tecido Adiposo Marrom/química , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Respiração Celular , Cisteína/genética , Cisteína/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Canais Iônicos/deficiência , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredução , Compostos de Sulfidrila/metabolismo , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1
16.
Cell Metab ; 22(4): 734-740, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278051

RESUMO

Exercise provides many health benefits, including improved metabolism, cardiovascular health, and cognition. We have shown previously that FNDC5, a type I transmembrane protein, and its circulating form, irisin, convey some of these benefits in mice. However, recent reports questioned the existence of circulating human irisin both because human FNDC5 has a non-canonical ATA translation start and because of claims that many human irisin antibodies used in commercial ELISA kits lack required specificity. In this paper we have identified and quantitated human irisin in plasma using mass spectrometry with control peptides enriched with heavy stable isotopes as internal standards. This precise state-of-the-art method shows that human irisin is mainly translated from its non-canonical start codon and circulates at ∼ 3.6 ng/ml in sedentary individuals; this level is increased to ∼ 4.3 ng/ml in individuals undergoing aerobic interval training. These data unequivocally demonstrate that human irisin exists, circulates, and is regulated by exercise.


Assuntos
Fibronectinas/sangue , Espectrometria de Massas em Tandem , Adulto , Sequência de Aminoácidos , Índice de Massa Corporal , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Exercício Físico , Fibronectinas/metabolismo , Humanos , Marcação por Isótopo , Masculino , Dados de Sequência Molecular , Peptídeos/análise , Adulto Jovem
17.
Cell ; 162(2): 425-440, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186194

RESUMO

Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors.


Assuntos
Mapas de Interação de Proteínas , Proteômica/métodos , Esclerose Lateral Amiotrófica/genética , Humanos , Espectrometria de Massas , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/isolamento & purificação , Proteínas/metabolismo
18.
J Biol Chem ; 287(52): 43853-61, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23118233

RESUMO

The L-type Ca(2+) channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α(1s) or Ca(V)1.1, α(2), ß(1a), δ1, and γ), we created transgenic mice expressing a recombinant ß(1a) subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α(2)-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of Ca(V)1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the ß subunit in a single docking possibility that defines the α1-ß interaction. The ß subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α(1s) subunit to the membrane and its suggested role in excitation-contraction coupling.


Assuntos
Canais de Cálcio Tipo L/ultraestrutura , Simulação de Acoplamento Molecular , Proteínas Musculares/ultraestrutura , Músculo Esquelético/ultraestrutura , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas
19.
Cell Calcium ; 49(2): 128-35, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21310482

RESUMO

Several studies have suggested that triadin (Tdn) may be a critical component of skeletal EC-coupling. However, using Tdn-null mice we have shown that triadin ablation results in no significant disruption of skeletal EC-coupling. To analyze the role of triadin in EC-coupling signaling here we used whole-cell voltage clamp and simultaneous recording of intracellular Ca²+ release to characterize the retrograde and orthograde signaling between RyR1 and DHPR in cultured myotubes. DHPR Ca²+ currents elicited by depolarization of Wt and Tdn-null myotubes displayed similar current densities and voltage dependence. However, kinetic analysis of the Ca²+ current shows that activation time constant of the slow component was slightly decreased in Tdn-null cells. Voltage-evoked Ca²+ transient of Tdn-null myotubes showed small but significant reduction in peak fluorescence amplitude but no differences in voltage dependence. This difference in Ca²+ amplitude was averted by over-expression of FKBP12.6. Our results show that bi-directional signaling between DHPR and RyR1 is preserved nearly intact in Tdn-null myotubes and that the effect of triadin ablation on Ca²+ transients appears to be secondary to the reduced FKBP12 binding capacity of RyR1 in Tdn-null myotubes. These data suggest that skeletal triadins do not play a direct role in skeletal EC-coupling.


Assuntos
Proteínas de Transporte/fisiologia , Acoplamento Excitação-Contração/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Camundongos , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA