Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Soft Matter ; 20(19): 3897-3900, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700293

RESUMO

Two protein interaction peaks are observed in pharmaceutically-relevant protein (serum albumin) : disaccharide 1 : 1 and 1 : 3 (w/w) freeze-dried systems for the first time. In samples with a higher disaccharide content, the protein-protein distances are longer for both populations, while the fraction of the protein population with a shorter protein-protein distance is lower. Both factors would favor better stability against aggregation for disaccharide-rich protein formulations. This study provides direct experimental support for a "dilution" hypothesis as a potential stabilization mechanism for freeze-dried protein formulations.


Assuntos
Dissacarídeos , Liofilização , Espalhamento a Baixo Ângulo , Difração de Raios X , Dissacarídeos/química , Difração de Nêutrons , Animais
2.
Mol Pharm ; 20(11): 5790-5799, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37889088

RESUMO

Water-to-ice transformation results in a 10% increase in volume, which can have a significant impact on biopharmaceuticals during freeze-thaw cycles due to the mechanical stresses imparted by the growing ice crystals. Whether these stresses would contribute to the destabilization of biopharmaceuticals depends on both the magnitude of the stress and sensitivity of a particular system to pressure and sheer stresses. To address the gap of the "magnitude" question, a phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), is evaluated as a probe to detect and quantify the freeze-induced pressure. DPPC can form several phases under elevated pressure, and therefore, the detection of a high-pressure DPPC phase during freezing would be indicative of a freeze-induced pressure increase. In this study, the phase behavior of DPPC/water suspensions, which also contain the ice nucleation agent silver iodide, is monitored by synchrotron small/wide-angle X-ray scattering during the freeze-thaw transition. Cooling the suspensions leads to heterogeneous ice nucleation at approximately -7 °C, followed by a phase transition of DPPC between -11 and -40 °C. In this temperature range, the initial gel phase of DPPC, Lß', gradually converts to a second phase, tentatively identified as a high-pressure Gel III phase. The Lß'-to-Gel III phase transition continues during an isothermal hold at -40 °C; a second (homogeneous) ice nucleation event of water confined in the interlamellar space is detected by differential scanning calorimetry (DSC) at the same temperature. The extent of the phase transition depends on the DPPC concentration, with a lower DPPC concentration (and therefore a higher ice fraction), resulting in a higher degree of Lß'-to-Gel III conversion. By comparing the data from this study with the literature data on the pressure/temperature Lß'/Gel III phase boundary and the lamellar lattice constant of the Lß' phase, the freeze-induced pressure is estimated to be approximately 0.2-2.6 kbar. The study introduces DPPC as a probe to detect a pressure increase during freezing, therefore addressing the gap between a theoretical possibility of protein destabilization by freeze-induced pressure and the current lack of methods to detect freeze-induced pressure. In addition, the observation of a freeze-induced phase transition in a phospholipid can improve the mechanistic understanding of factors that could disrupt the structure of lipid-based biopharmaceuticals, such as liposomes and mRNA vaccines, during freezing and thawing.


Assuntos
Produtos Biológicos , Água , Congelamento , Água/química , Fosfolipídeos , Temperatura , Gelo , 1,2-Dipalmitoilfosfatidilcolina/química , Difração de Raios X , Síncrotrons , Transição de Fase , Varredura Diferencial de Calorimetria
3.
Nano Lett ; 23(5): 1645-1651, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36795963

RESUMO

The assembly of polyoxometalate (POM) metal-oxygen clusters into ordered nanostructures is attracting a growing interest for catalytic and sensing applications. However, assembly of ordered nanostructured POMs from solution can be impaired by aggregation, and the structural diversity is poorly understood. Here, we present a time-resolved small-angle X-ray scattering (SAXS) study of the co-assembly in aqueous solutions of amphiphilic organo-functionalized Wells-Dawson-type POMs with a Pluronic block copolymer over a wide concentration range in levitating droplets. SAXS analysis revealed the formation and subsequent transformation with increasing concentration of large vesicles, a lamellar phase, a mixture of two cubic phases that evolved into one dominating cubic phase, and eventually a hexagonal phase formed at concentrations above 110 mM. The structural versatility of co-assembled amphiphilic POMs and Pluronic block copolymers was supported by dissipative particle dynamics simulations and cryo-TEM.

4.
Nanoscale Adv ; 4(21): 4535-4541, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341302

RESUMO

The magnetic field-induced actuation of colloidal nanoparticles has enabled tremendous recent progress towards microrobots, suitable for a variety of applications including targeted drug delivery, environmental remediation, or minimally invasive surgery. Further size reduction to the nanoscale requires enhanced control of orientation and locomotion to overcome dominating viscous properties. Here, control of the coherent precession of hematite spindles via a dynamic magnetic field is demonstrated using nanoscale particles. Time-resolved small-angle scattering and optical transmission measurements reveal a clear frequency-dependent variation of orientation and rotation of an entire ensemble of non-interacting hematite nanospindles. The different motion mechanisms by nanoscale spindles in bulk dispersion resemble modes that have been observed for much larger, micron-sized elongated particles near surfaces. The dynamic rotation modes promise hematite nanospindles as a suitable model system for field-induced locomotion in nanoscale magnetic robots.

5.
Adv Sci (Weinh) ; 9(33): e2203371, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36251923

RESUMO

The lateral eyes of the horseshoe crab, Limulus polyphemus, are the largest compound eyes within recent Arthropoda. The cornea of these eyes contains hundreds of inward projecting elongated cuticular cones and concentrate light onto proximal photoreceptor cells. Although this visual system has been extensively studied before, the precise mechanism allowing vision has remained controversial. Correlating high-resolution quantitative refractive index (RI) mapping and structural analysis, it is demonstrated how gradients of RI in the cornea stem from structural and compositional gradients in the cornea. In particular, these RI variations result from the chitin-protein fibers architecture, heterogeneity in protein composition, and bromine doping, as well as spatial variation in water content resulting from matrix cross-linking on the one hand and cuticle porosity on the other hand. Combining the realistic cornea structure and measured RI gradients with full-wave optical modeling and ray tracing, it is revealed that the light collection mechanism switches from refraction-based graded index (GRIN) optics at normal light incidence to combined GRIN and total internal reflection mechanism at high incident angles. The optical properties of the cornea are governed by different mechanisms at different hierarchical levels, demonstrating the remarkable versatility of arthropod cuticle.


Assuntos
Caranguejos Ferradura , Proteínas , Animais , Caranguejos Ferradura/química , Caranguejos Ferradura/metabolismo , Proteínas/metabolismo , Células Fotorreceptoras , Visão Ocular , Córnea
6.
J Appl Crystallogr ; 55(Pt 1): 98-111, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35145357

RESUMO

The new technical features and enhanced performance of the ID02 beamline with the Extremely Brilliant Source (EBS) at the ESRF are described. The beamline enables static and kinetic investigations of a broad range of systems from ångström to micrometre size scales and down to the sub-millisecond time range by combining different small-angle X-ray scattering techniques in a single instrument. In addition, a nearly coherent beam obtained in the high-resolution mode allows multispeckle X-ray photon correlation spectroscopy measurements down to the microsecond range over the ultra-small- and small-angle regions. While the scattering vector (of magnitude q) range covered is the same as before, 0.001 ≤ q ≤ 50 nm-1 for an X-ray wavelength of 1 Å, the EBS permits relaxation of the collimation conditions, thereby obtaining a higher flux throughput and lower background. In particular, a coherent photon flux in excess of 1012 photons s-1 can be routinely obtained, allowing dynamic studies of relatively dilute samples. The enhanced beam properties are complemented by advanced pixel-array detectors and high-throughput data reduction pipelines. All these developments together open new opportunities for structural, dynamic and kinetic investigations of out-of-equilibrium soft matter and biophysical systems.

7.
Biochim Biophys Acta Gen Subj ; 1866(5): 130101, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35151821

RESUMO

BACKGROUND: Polyhydroxycompounds (PHC) are used as lyoprotectors to minimize aggregation of pharmaceutical proteins during freeze-drying and storage. METHODS: Lysozyme/PHC mixtures with 1:1 and 1:3 (w/w) ratios are freeze-dried from either H2O or D2O solutions. Disaccharides (sucrose and trehalose), monosaccharide (glucose), and sugar alcohol (sorbitol) are used in the study. Small-angle neutron and X-ray scattering (SANS and SAXS) are applied to study protein-protein interaction in the freeze-dried samples. RESULTS: Protein interaction peak in the freeze-dried mixtures has been detected by both SANS (D2O-based samples only) and SAXS (both D2O- and H2O-based). In the 1:1 mixtures, protein separation distances are similar (center-of-mass distance of approx. 31 Å) between all lyoprotectors studied. Mixtures with a higher content of the disaccharides (1:3 ratio) have a higher separation distance of approx 40 Å. The higher separation could reduce protein-protein contacts and therefore be associated with less favourable aggregation conditions. In the 1:3 mixtures with glucose and sorbitol, complex SANS and SAXS/WAXS patterns are observed. The pattern for the glucose sample indicate two populations of lysozyme molecules, while the origin of multiple SAXS peaks in the lysozyme/sorbitol 1:3 mixture is uncertain. CONCLUSIONS: Protein-protein separation distance is determined predominantly by the lyoprotector/protein weight ratio. GENERAL SIGNIFICANCE: Use of SANS and SAXS improves understanding of mechanisms of protein stabilization by sugars in freeze-dried formulations, and provide a tool to verify hypothesis on relationship between protein/protein separation and aggregation propensity in the dried state.


Assuntos
Muramidase , Proteínas , Glucose , Nêutrons , Espalhamento a Baixo Ângulo , Sorbitol , Trealose , Difração de Raios X , Raios X
8.
J Colloid Interface Sci ; 609: 698-706, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34862046

RESUMO

The addition of gallium ions to a solution of a double-hydrophilic block copolymer, i.e. poly(ethylene oxide)-block-poly(acrylic acid), leads to the spontaneous formation of highly monodisperse micelles with a Hybrid PolyIon Complexes (HPICs) core. By combining several techniques, a precise description of the HPIC architecture was achieved. In particular and for the first time, NMR and anomalous small angle X-ray scattering (ASAXS) enable tracking of the inorganic ions in solution and highlighting the co-localization of the gallium and the poly(acrylic acid) blocks in a rigid structure at the core of the micelle. Such a core has a radius of ca 4.3 nm while the complete nano-object with its poly(ethylene oxide) shell has a total radius of ca 11 nm. The aggregation number was also estimated using the ASAXS results. This comprehensive structural characterization of the Ga HPICs corroborates the assumptions made for HPICs based on other inorganic ions and demonstrates the universality of the HPIC structure leading, for example, to new families of contrast agents in medical imaging.


Assuntos
Gálio , Micelas , Íons , Polietilenoglicóis , Polímeros
9.
ACS Appl Mater Interfaces ; 13(30): 36262-36274, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34291639

RESUMO

Understanding the complex structure of polymer blends filled with nanoparticles (NPs) is key to design their macroscopic properties. Here, the spatial distribution of hydrogenated (H) and deuterated (D) polymer chains asymmetric in mass is studied by small-angle neutron scattering. Depending on the chain mass, a qualitatively new large-scale organization of poly(vinyl acetate) chains beyond the random-phase approximation is evidenced in nanocomposites with attractive polymer-silica interactions. The silica is found to systematically induce bulk segregation. Only with long H-chains, a strong scattering signature is observed in the q range of the NP size: it is the sign of interfacial isotopic enrichment, that is, of contrasted polymer shells close to the NP surface. A quantitative model describing both the bulk segregation and the interfacial gradient (over ca. 10-20 nm depending on the NP size) is developed, showing that both are of comparable strength. In all cases, NP surfaces trap the polymer blend in a non-equilibrium state, with preferential adsorption around NPs only if the chain length and isotopic preference toward the surface combine their entropic and enthalpic driving forces. This structural evidence for interfacial polymer gradients will open the road for quantitative understanding of the dynamics of many-chain nanocomposite systems.

10.
Macromolecules ; 54(6): 2912-2920, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33867580

RESUMO

In highly selective solvents, block copolymers (BCPs) form association colloids, while in solvents with poor selectivity, they exhibit a temperature-controlled (de)mixing behavior. Herein, it is shown that a temperature-responsive self-assembly behavior emerges in solvent mixtures of intermediate selectivity. A biocompatible poly-ethylene(oxide)-block-poly-ε-caprolactone (PEO-PCL) BCP is used as a model system. The polymer is dissolved in solvent mixtures containing water (a strongly selective solvent for PEO) and ethanol (a poorly selective solvent for PEO) to tune the solvency conditions. Using synchrotron X-ray scattering, cryogenic transmission electron microscopy, and scanning probe microscopy, it is shown that a rich temperature-responsive behavior can be achieved in certain solvent mixtures. Crystallization of the PCL block enriches the phase behavior of the BCP by promoting sphere-to-cylinder morphology transitions at low temperatures. Increasing the water fraction in the solvent causes a suppression of the sphere-to-cylinder morphology transition. These results open up the possibility to induce temperature-responsive properties on demand in a wide range of BCP systems.

11.
Carbohydr Polym ; 260: 117751, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712121

RESUMO

The breakdown and buildup mechanisms in concentrated cellulose nanocrystal (CNC) suspensions under shear and during relaxation upon cessation of shear were accessed by small-angle X-ray and light scattering combined with rheometry. The dynamic structural changes over nanometer to micrometer lengthscales were related to the well-known three-regime rheological behavior. In the shear-thinning regime I, the large liquid crystalline domains were progressively fragmented into micrometer-sized tactoids, with their cholesteric axis aligned perpendicular to the flow direction. The viscosity plateau of regime II was associated to a further disruption into submicrometer-sized elongated tactoids oriented along the velocity direction. At high shear rate, regime III corresponded to the parallel flow of individual CNCs along the velocity direction. Upon cessation of flow, the relaxation process occurred through a three-step buildup mechanisms: i) a fast reassembling of the individual CNCs into a nematic-like organization established up to micrometer lengthscales, ii) a slower formation of oriented large cholesteric domains, and iii) their isotropic redistribution.


Assuntos
Celulose/química , Nanopartículas/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Difusão Dinâmica da Luz , Cristais Líquidos/química , Reologia , Resistência ao Cisalhamento , Viscosidade
12.
J Phys Chem Lett ; 12(5): 1453-1460, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33523661

RESUMO

Mannitol, a common pharmaceutical ingredient, exhibits complex polymorphism even in simple binary mannitol/water mixtures, with four crystalline forms observed. In this investigation, time/temperature-resolved synchrotron X-ray diffraction measurements are performed during freezing and thawing of mannitol/water mixtures. Mannitol crystallization depends strongly on the cooling rate and is initiated during cooling, if the cooling rate is lower than the critical cooling rate; otherwise, mannitol remains amorphous during freezing and crystallizes during subsequent heating above -30 °C. A temperature-composition phase diagram is constructed, reflecting eutectic and peritectic points and lower-temperature equilibria involving mannitol hemihydrate, hexagonal ice, and ß-mannitol. Comparison of the experimental data with the phase diagram reveals that the mannitol crystallization behavior does not follow the equilibrium but appears to obey the Ostwald crystallization rule. Novel insights on equilibrium and kinetics phase relationships in mannitol/water systems could lead to improved formulations and manufacturing processes for pharmaceuticals and biopharmaceuticals.

13.
J Phys Chem B ; 125(5): 1476-1486, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33507083

RESUMO

Phase transitions of poloxamer 188 (P188) aqueous solutions at freezing temperatures are investigated using small-angle neutron scattering (SANS) and small- and wide-angle X-ray scatterings (SAXS and WAXS). It is shown that P188 solution (10%) undergoes the following sequence of phase transitions during cooling from 25 to -150 °C: micelle solution, solution of monomers, two-phase mixture of liquid crystalline mesophase + ice, and finally crystalline P188 + ice. Formation of the liquid crystalline phase during freezing is likely to be triggered by water freezing to ice and corresponding freeze concentration of the remaining solution. During heating of the frozen solutions, the sequence of the phase transitions is reversed: crystalline P188 + ice, liquid crystalline mesophase + ice, monomer solution + ice, monomer solution, and finally micelle solution. Similar phase transitions are detected for dilute solutions of P188 (1%) except that micelle formation is not observed at 25 °C, consistent with the literature reported critical micelle concentration (CMC) at this temperature. The present study provides new insight into P188 aqueous solutions at freezing temperatures and has practical implications on the design and development of pharmaceutical formulations.

14.
Soft Matter ; 16(17): 4142-4154, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32319505

RESUMO

We have used time-resolved small-angle X-ray scattering (SAXS) to study the adhesion of lipid vesicles in the electrostatic strong-coupling regime induced by divalent ions. The bilayer structure and the interbilayer distance dw between adhered vesicles was studied for different DOPC:DOPS mixtures varying the surface charge density of the membrane, as well as for different divalent ions, such as Ca2+, Sr2+, and Zn2+. The results are in good agreement with the strong coupling theory predicting the adhesion state and the corresponding like-charge attraction based on ion-correlations. Using SAXS combined with the stopped-flow rapid mixing technique, we find that in highly charged bilayers the adhesion state is only of transient nature, and that the adhering vesicles subsequently transform to a phase of multilamellar vesicles, again with an inter-bilayer distance according to the theory of strong binding. Aside from the stopped-flow SAXS instrumentations used primarily for these results, we also evaluate microfluidic sample environments for vesicle SAXS in view of future extension of this work.

15.
ACS Cent Sci ; 6(3): 413-419, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32232141

RESUMO

Softness and firmness are seemingly incompatible traits that synergize to create the unique soft-yet-firm tactility of living tissues pursued in soft robotics, wearable electronics, and plastic surgery. This dichotomy is particularly pronounced in tissues such as fat that are known to be both ultrasoft and ultrafirm. However, synthetically replicating this mechanical response remains elusive since ubiquitously employed soft gels are unable to concurrently reproduce tissue firmness. We have addressed the tissue challenge through the self-assembly of linear-bottlebrush-linear (LBL) block copolymers into thermoplastic elastomers. This hybrid molecular architecture delivers a hierarchical network organization with a cascade of deformation mechanisms responsible for initially low moduli followed by intense strain-stiffening. By bridging the firmness gap between gels and tissues, we have replicated the mechanics of fat, fetal membrane, spinal cord, and brain tissues. These solvent-free, nonleachable, and tissue-mimetic elastomers also show enhanced biocompatibility as demonstrated by cell proliferation studies, all of which are vital for the safety and longevity of future biomedical devices.

16.
Polymers (Basel) ; 12(3)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106486

RESUMO

Scattering techniques with neutrons and X-rays are powerful methods for the investigation of the hierarchical structure of reinforcing fillers in rubber matrices. However, when using only X-ray scattering, the independent determination of the filler response itself sometimes remains an issue because of a strong parasitic contribution of the ZnO catalyst and activator in the vulcanization process. Microscopic characterization of filler-rubber mixtures even with only catalytic amounts of ZnO is, therefore, inevitably complex. Here, we present a study of silica aggregates dispersed in an SBR rubber in the presence of the catalyst and show that accurate partial structure factors of both components can be determined separately from the combination of the two scattering probes, neutrons, and X-rays. A unique separation of the silica filler scattering function devoid of parasitic catalyst scattering becomes possible. From the combined analysis, the catalyst contribution is determined as well and results to be prominent in the correction scheme. The experimental nano-structure of the ZnO after the mixing process as the by-product of the scattering decomposition was found also to be affected by the presence or absence of silica in the rubber mixture, correlated with the shear forces in the mixing and milling processes during sample preparation. The presented method is well suited for studies of novel dual filler systems.

17.
Phys Rev Lett ; 124(5): 058003, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083896

RESUMO

Monte Carlo simulations, fully constrained by experimental parameters, are found to agree well with a measured phase diagram of aqueous dispersions of nanoparticles with a moderate size polydispersity over a broad range of salt concentrations, c_{s}, and volume fractions, ϕ. Upon increasing ϕ, the colloids freeze first into coexisting compact solids then into a body centered cubic phase (bcc) before they melt into a glass forming liquid. The surprising stability of the bcc solid at high ϕ and c_{s} is explained by the interaction (charge) polydispersity and vibrational entropy.

18.
Soft Matter ; 16(8): 2128-2134, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32016274

RESUMO

In globular protein systems, upper critical solution temperature (UCST) behavior is common, but lower critical solution temperature (LCST) phase transitions are rare. In addition, the temperature sensitivity of such systems is usually difficult to tune. Here we demonstrate that the charge state of globular proteins in aqueous solutions can alter their temperature-dependent phase behavior. We show a universal way to tune the effective protein interactions and induce both UCST and LCST-type transitions in the system using trivalent salts. We provide a phase diagram identifying LCST and UCST regimes as a function of protein and salt concentrations. We further propose a model based on an entropy-driven cation binding mechanism to explain the experimental observations.


Assuntos
Lactoglobulinas/química , Soroalbumina Bovina/química , Soluções/química , Animais , Bovinos , Entropia , Transição de Fase , Temperatura
19.
Langmuir ; 35(36): 11836-11842, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31430161

RESUMO

A dramatic improvement is reported in the stability of colloidal particles when stabilizing surface grafts are systematically shortened from small polymers to single monomers. The colloidal dispersions consist of fluorinated latex particles, exhibiting a weak van der Waals attraction, with grafted steric layers of poly(ethylene glycol) (PEG) of different chain lengths. Using an effective salting-out electrolyte, Na2CO3, particle aggregates are detected above a threshold salt concentration that is independent of the particle concentration. The results are interpreted in terms of a sudden onset of nondispersibility of single particles, triggered by the solvent not completely wetting particle surfaces. By decreasing the PEG chain length, the threshold salt concentration is found to increase sharply. For grafts with just a single ethylene glycol group, dispersions remain stable up to exceedingly high concentrations of Na2CO3. However, on removal of the surface coverage altogether, the classical stability behavior of charge-stabilized dispersions is recovered. The behavior can be captured by a simple model that incorporates effective polymer-solvent interactions in the presence of an electrolyte.

20.
J Synchrotron Radiat ; 26(Pt 2): 406-412, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855249

RESUMO

Serial synchrotron crystallography allows low X-ray dose, room-temperature crystal structures of proteins to be determined from a population of microcrystals. Protein production and crystallization is a non-trivial procedure and it is essential to have X-ray-compatible sample environments that keep sample consumption low and the crystals in their native environment. This article presents a fast and optimized manufacturing route to metal-polyimide microfluidic flow-focusing devices which allow for the collection of X-ray diffraction data in flow. The flow-focusing conditions allow for sample consumption to be significantly decreased, while also opening up the possibility of more complex experiments such as rapid mixing for time-resolved serial crystallography. This high-repetition-rate experiment allows for full datasets to be obtained quickly (∼1 h) from crystal slurries in liquid flow. The X-ray compatible microfluidic chips are easily manufacturable, reliable and durable and require sample-flow rates on the order of only 30 µl h-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA