Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 101(1): 100-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26663041

RESUMO

The effect of exocrine pancreatic function on the glucose-mediated insulin response and glucose utilization were studied in an exocrine pancreas-insufficient (EPI) pig model. Five 10-week-old EPI pigs after pancreatic duct ligation and 6 age-matched, non-operated control pigs were used in the study. Blood glucose, plasma insulin and C-peptide concentrations were monitored during meal (MGTT), oral (OGTT) and intravenous (IVGTT) glucose tolerance tests. Upon post-mortem examination, the pancreatic remnants of the EPI pigs showed acinar fibrotic atrophy but normal islets and ß-cell morphology. The EPI pigs displayed increased fasting glucose concentrations compared with control animals (6.4 ± 0.4 versus 4.8 ± 0.1 mmol l(-1) , P < 0.0001) but unchanged insulin concentrations (2.4 ± 0.6 versus 2.1 ± 0.2 pmol l(-1) ). During the OGTT and IVGTT, the EPI pigs showed slower, impaired glucose utilization, with the disruption of a well-timed insulin response. Plasma C-peptide concentrations confirmed the delayed insulin response during the IVGTT in EPI pigs. Oral pancreatic enzyme supplementation (PES) of EPI pigs improved glucose clearance during IVGTT [AUC(glucose) 1295 ± 70 mmol l(-1) × (120 min) in EPI versus 1044 ± 32 mmol l(-1) × (120 min) in EPI + PES, P < 0.0001] without reinforcing the release of insulin [AUC(C-peptide) 14.4 ± 3.8 nmol l(-1) × (120 min) in EPI versus 6.4 ± 1.3 nmol l(-1) × (120 min) in EPI + PES, P < 0.002]. The results suggest the existence of an acino-insular axis regulatory communication. The presence of pancreatic enzymes in the gut facilitates glucose utilization in an insulin-independent manner, indicating the existence of a gut-derived pancreatic enzyme-dependent mechanism involved in peripheral glucose utilization.


Assuntos
Glicemia/metabolismo , Insulina/sangue , Pâncreas Exócrino , Animais , Atrofia , Peptídeo C/metabolismo , Ingestão de Alimentos , Fibrose , Teste de Tolerância a Glucose , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Ligadura , Ductos Pancreáticos/cirurgia , Sus scrofa , Suínos , Aumento de Peso
2.
Adv Med Sci ; 60(1): 112-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25658045

RESUMO

PURPOSE: Plasma levels of pancreatic and intestinal enzymes were measured after pancreatic duct ligation (PDL) to monitor pancreatic exocrine insufficiency (PEI) in a model using young pigs. MATERIAL/METHODS: Five, 6 week-old pigs (10.9±0.2kg), underwent PDL while age-matched, un-operated pigs were used as controls. Plasma levels of immunoreactive cationic trypsinogen (IRCT), amylase, lipase, and diamine oxidase (DAO) activities were analyzed for 48 days after PDL, including 1 week of oral pancreatic enzyme supplementation (PES) with Creon(®). RESULTS: PDL resulted in an arrested body growth and a rapid surge of pancreatic enzymes (IRCT, amylase and lipase) into the plasma. Nine days after PDL, the plasma levels of these pancreatic enzymes had decreased. IRCT then remained below the level in un-operated pigs while amylase only fell below control at 25 days. The intestinally derived marker DAO and plasma protein levels were unaffected by PDL but DAO decreased slightly with time in PEI pigs. One-week of oral PES restored body growth, but had little effect on pancreatic enzyme plasma levels, except for a tendency towards increased DAO. CONCLUSIONS: The study showed that PEI developed within 1-2 weeks after PDL and that only IRCT is a reliable plasma enzyme marker for this. The reduced plasma DAO indicated that PEI also affected the intestines, while PES therapy restored growth of the PDL pigs and slightly increased plasma DAO, suggesting an improved intestinal function.


Assuntos
Insuficiência Pancreática Exócrina/sangue , Insuficiência Pancreática Exócrina/enzimologia , Intestinos/enzimologia , Pâncreas/enzimologia , Ductos Pancreáticos/lesões , Amilases/sangue , Animais , Ligadura , Lipase/sangue , Suínos
3.
Br J Nutr ; 112(12): 2060-7, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25348808

RESUMO

The maldigestion and malabsorption of fat in infants fed milk formula results due to the minimal production of pancreatic lipase. Thus, to investigate lipid digestion and absorption and mimic the situation in newborns, a young porcine exocrine pancreatic insufficient (EPI) model was adapted and validated in the present study. A total of thirteen EPI pigs, aged 8 weeks old, were randomised into three groups and fed either a milk-based formula or a milk-based formula supplemented with either bacterial or fungal lipase. Digestion and absorption of fat was directly correlated with the addition of lipases as demonstrated by a 30% increase in the coefficient of fat absorption. In comparison to the control group, a 40 and 25% reduction in total fat content and 26 and 45% reduction in n-3 and n-6 fatty acid (FA) content in the stool was observed for lipases 1 and 2, respectively. Improved fat absorption was reflected in the blood levels of lipid parameters. During the experiment, only a very slight gain in body weight was observed in EPI piglets, which can be explained by the absence of pancreatic protease and amylase in the gastrointestinal tract. This is similar to newborn babies that have reduced physiological function of exocrine pancreas. In conclusion, we postulate that the EPI pig model fed with infant formula mimics the growth and lipid digestion and absorption in human neonates and can be used to elucidate further importance of fat and FA in the development and growth of newborns, as well as for testing novel formula compositions.


Assuntos
Gorduras Insaturadas na Dieta/metabolismo , Digestão , Modelos Animais de Doenças , Insuficiência Pancreática Exócrina/metabolismo , Fórmulas Infantis , Absorção Intestinal , Lipase/deficiência , Animais , Peso Corporal , Insuficiência Pancreática Exócrina/etiologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fezes , Trato Gastrointestinal/metabolismo , Crescimento , Humanos , Recém-Nascido , Ligadura , Lipase/farmacologia , Metabolismo dos Lipídeos , Masculino , Leite , Pâncreas Exócrino , Ductos Pancreáticos/cirurgia , Distribuição Aleatória , Suínos
4.
Clin Nutr ; 33(6): 1122-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24411616

RESUMO

BACKGROUND & AIMS: Dietary chloroplast thylakoids have previously been found to reduce food intake and body weight in animal models, and to change metabolic profiles in humans in mixed-food meal studies. The aim of this study was to investigate the modulatory effects of thylakoids on glucose metabolism and appetite-regulating hormones during an oral glucose tolerance test in pigs fed a high fat diet. METHODS: Six pigs were fed a high fat diet (36 energy% fat) for one month before oral glucose tolerance test (1 g/kg d-glucose) was performed. The experiment was designed as a cross-over study, either with or without addition of 0.5 g/kg body weight of thylakoid powder. RESULTS: The supplementation of thylakoids to the oral glucose tolerance test resulted in decreased blood glucose concentrations during the first hour, increased plasma cholecystokinin concentrations during the first two hours, and decreased late postprandial secretion of ghrelin. CONCLUSION: Dietary thylakoids may be a novel agent in reducing the glycaemic responses to high carbohydrate and high glycaemic index foods. Thylakoids may in the future be promising for treatment and prevention of diabetes, overweight and obesity.


Assuntos
Glicemia/metabolismo , Grelina/metabolismo , Teste de Tolerância a Glucose , Tilacoides/química , Animais , Apetite , Peso Corporal , Colecistocinina/sangue , Glucose/administração & dosagem , Glucose/farmacocinética , Índice Glicêmico , Absorção Intestinal/efeitos dos fármacos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA