Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895763

RESUMO

Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH3) and its demethylated counterpart PIM-EA-TB(H2), which have high Brunauer-Emmett-Teller surface area values of 1030 m2 g-1 and 836 m2 g-1, respectively. As these two polymers only differ in the presence of two methyl groups at the ethanoanthracene unit, the effect of methyl group rotation can be investigated solely. To cover a broad dynamic range, neutron time-of-flight was combined with neutron backscattering. The demethylated PIM-EA-TB(H2) exhibits a relaxation process with a weak intensity at short times. As the backbone is rigid and stiff this process was assigned to bend-and-flex fluctuations. This process was also observed for the PIM-EA-TB(CH3). A further relaxation process is found for PIM-EA-TB(CH3), which is the methyl group rotation. It was analyzed by a jump-diffusion in a three-fold potential considering also the fact that only a fraction of the present hydrogens in PIM-EA-TB(CH3) participate in the methyl group rotation. This analysis can quantitatively describe the q dependence of the elastic incoherent structure factor. Furthermore, a relaxation time for the methyl group rotation can be extracted. A high activation energy of 35 kJ mol-1 was deduced. This high activation energy evidences a strong hindrance of the methyl group rotation in the bridged PIM-EA-TB(CH3) structure.

2.
ACS Omega ; 9(18): 20152-20166, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737077

RESUMO

Cellulose nanofibrils (CNFs) with different charge densities were prepared and investigated by a combination of different complementary techniques sensitive to the structure and molecular dynamics of the system. The morphology of the materials was investigated by scanning electron microscopy (SEM) and X-ray scattering (SAXS/WAXS). The latter measurements were quantitatively analyzed yielding to molecular parameters in dependence of the charge density like the diameter of the fibrils, the distance between the fibrils, and the dimension of bundles of nanofibrils, including pores. The influence of water on the properties and the charge density is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy. The TGA measurements reveal two mass loss processes. The one at lower temperatures was related to the loss of water, and the second process at higher temperatures was related to the chemical decomposition. The resulting char yield could be correlated to the distance between the microfibrils. The DSC investigation for hydrated CNFs revealed three glass transitions due to the cellulose segments surrounded by water molecules in different states. In the second heating scan, only one broad glass transition is observed. The dielectric spectra reveal two relaxation processes. At low temperatures or higher frequencies, the ß-relaxation is observed, which is assigned to localized fluctuation of the glycosidic linkage. At higher temperatures and lower frequencies, the α-relaxation takes places. This relaxation is due to cooperative fluctuations in the cellulose segments. Both processes were quantitatively analyzed. The obtained parameters such as the relaxation rates were related to both the morphological data, the charge density, and the content of water for the first time.

3.
Small ; : e2310580, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751207

RESUMO

Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures. Herein, novel MPL materials based on interpenetrating polymer networks (IPNs) are presented that effectively combine the advantages of acrylate and epoxy systems. IPNs with varying component ratios are investigated for their microfabrication performance and structural integrity with respect to thermal and micromechanical properties. A variety of high-resolution techniques is applied to comprehensively evaluate IPN properties at the bulk, micron, and segmental levels. This study shows that the MPL laser scanning velocity and power, photoinitiator content, and multi-step exposure can be used to tune the morphology and properties of the IPN. As a result, a library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. New IPN microstructures with Young's moduli of 3-4 MPa demonstrate high-to-fully elastic responses to deformations, making them promising for applications in morphable microsystems, soft micro-robotics, and cell engineering.

4.
Angew Chem Int Ed Engl ; : e202400382, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619863

RESUMO

Lithium-ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur-based cathodes, offering a high theoretical capacity of 1675 mAh g-1 and environmental advantages due to sulfur's abundance and lower toxicity, present a more sustainable alternative. However, state-of-the-art sulfur-based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries. Consequently, sulfur's mobility leads to battery degradation-an effect known as the "sulfur-shuttle". This study introduces a solution by developing a microporous, covalently-bonded, imine-based polymer network grown in situ around sulfur particles on the current collector. The polymer network (i) enables selective transport of electrolyte and Li-ions through pores of defined size, and (ii) acts as a robust host to retain the active component of the electrode (sulfur species). The resulting cathode has superior rate performance from 0.1 C (1360 mAh g-1) to 3 C (807 mAh g-1). Demonstrating a high-performance, sustainable sulfur cathode produced via a simple one-pot process, our research underlines the potential of microporous polymers in addressing sulfur diffusion issues, paving the way for sulfur electrodes as viable alternatives to traditional metal-based cathodes.

5.
Chemistry ; 29(71): e202302150, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37679939

RESUMO

We show that mechanochemically driven polymorphic transformations can require extremely long induction periods, which can be tuned from hours to days by changing ball milling energy. The robust design and interpretation of ball milling experiments must account for this unexpected kinetics that arises from energetic phenomena unique to the solid state. Detailed thermal analysis, combined with DFT simulations, indicates that these marked induction periods are associated with processes of mechanical activation. Correspondingly, we show that the pre-activation of reagents can also lead to marked changes in the length of induction periods. Our findings demonstrate a new dimension for exerting control over polymorphic transformations in organic crystals. We expect mechanical activation to have a much broader implication across organic solid-state mechanochemistry.

6.
Soft Matter ; 19(21): 3975-3982, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37222455

RESUMO

The growth kinetics of the adsorbed layer of poly(2-vinylpiridine) on silicon oxide is studied using a leaching technique which is based on the Guiselin brushes approach. The adsorbed layer is grown from a 200 nm thick P2VP film for several annealing time periods at different annealing temperatures. Then the film is solvent-leached, and the height of the remaining adsorbed layer is measured by atomic force microscopy. At the lowest annealing temperature only a linear growth regime is observed, followed by a plateau. Here, the molecular mobility of segments is too low to allow for a logarithmic growth. At higher annealing temperatures, both linear and logarithmic growth regimes are observed, followed by a plateau. At even higher annealing temperatures, the growth kinetics of the adsorbed layer changes. A linear growth followed by logarithmic growth kinetics is observed for short annealing time periods. For longer annealing time periods, an upturn of the growth kinetics is observed. At the highest annealing temperature, only a logarithmic growth regime is found. The change in the growth kinetics is discussed by an alteration in the structure of the adsorbed layer. Moreover, the interaction between the polymer segments and the substrate becomes weaker due to both enthalpic and entropic effects. Therefore, at high annealing temperatures the polymer segments might more easily desorb from the substrate.

7.
RSC Adv ; 13(21): 14473-14483, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179996

RESUMO

The glass transition behavior of thin films of poly(bisphenol A carbonate) (PBAC) was studied employing ellipsometry. The glass transition temperature increases with the reduction of the film thickness. This result is attributed to the formation of an adsorbed layer with a reduced mobility compared to bulk PBAC. Therefore, for the first time, the growth kinetics of the adsorbed layer of PBAC was investigated, prepared by leaching samples from a 200 nm thin film which were annealed for several times at three different temperatures. The thickness of each prepared adsorbed layer was measured by multiple scans using atomic force microscopy (AFM). Additionally, an unannealed sample was measured. Comparison of the measurements of the unannealed and the annealed samples provides proof of a pre-growth regime for all annealing temperatures which was not observed for other polymers. For the lowest annealing temperature after the pre-growth stage only a growth regime with a linear time dependence is observed. For higher annealing temperatures the growth kinetics changes from a linear to a logarithmic growth regime at a critical time. At the longest annealing times the films showed signs of dewetting where segments of the adsorbed film were removed from the substrate (dewetting by desorption). The dependence of the surface roughness of the PBAC surface on annealing time also confirmed that the films annealed at highest temperatures for the longest times desorbed from the substrate.

8.
Polymers (Basel) ; 14(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683975

RESUMO

An immobilization of graphene oxide (GO) into a matrix of polyvinyl formaldehyde (PVF) foam as an eco-friendly, low cost, superior, and easily recovered sorbent of Pb ions from an aqueous solution is described. The relationships between the structure and electrochemical properties of PVF/GO composite with implanted Pb ions are discussed for the first time. The number of alcohol groups decreased by 41% and 63% for PVF/GO and the PVF/GO/Pb composite, respectively, compared to pure PVF. This means that chemical bonds are formed between the Pb ions and the PVF/GO composite based on the OH groups. This bond formation causes an increase in the Tg values attributed to the formation of a strong surface complexation between adjacent layers of PVF/GO composite. The conductivity increases by about 2.8 orders of magnitude compared to the values of the PVF/GO/Pb composite compared to the PVF. This means the presence of Pb ions is the main factor for enhancing the conductivity where the conduction mechanism is changed from ionic for PVF to electronic conduction for PVF/GO and PVF/GO/Pb.

9.
Soft Matter ; 17(29): 6985-6994, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34236377

RESUMO

The composition of the surface layer in dependence from the distance of the polymer/air interface in thin films with thicknesses below 100 nm of miscible polymer blends in a spatial region of a few nanometers is not investigated completely. Here, thin films of the blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) with a composition of 25/75 wt% are investigated by Energy Resolved X-ray Photoelectron Spectroscopy (ER-XPS) at a synchrotron storage ring using excitation energies lower than 1 keV. By changing the energy of the photons the information depth is varied in the range from ca. 1 nm to 10 nm. Therefore, the PVME concentration could be estimated in dependence from the distance of the polymer/air interface for film thicknesses below 100 nm. Firstly, as expected for increasing information depth the PVME concentration decreases. Secondly, it was found that the PVME concentration at the surface has a complicated dependence on the film thickness. It increases with decreasing film thickness until 30 nm where a maximum is reached. For smaller film thicknesses the PVME concentration decreases. A simplified layer model is used to calculate the effective PVME concentration in the different spatial regions of the surface layer.

10.
Polymers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069948

RESUMO

Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH)3 nanodots) was considered. For Ep/HNT, the glass transition temperature (Tg) was decreased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler-matrix interactions leading to higher Tg values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a ß- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities.

11.
Soft Matter ; 17(10): 2775-2790, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33543739

RESUMO

A detailed calorimetric study on an epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) as the polymer matrix and a taurine-modified MgAL layered double hydroxide (T-LDH) as the nanofiller. The -NH2 group of taurine can react with DGEBA improving the interaction of the polymer with the filler. The combined X-ray scattering and electron microscopy data showed that the nanocomposite has a partially exfoliated morphology. Calorimetric studies were performed using conventional DSC, temperature modulated DSC (TMDSC) and fast scanning calorimetry (FSC) in the temperature modulated approach (TMFSC) to investigate the vitrification and molecular mobility dependent on the filler concentration. First, TMDSC and NMR were used to estimate the amount of the rigid amorphous fraction which consists of immobilized polymer segments at the nanoparticle surface. It was found to be 40 wt% for the highest filler concentration, indicating that the interface dominates the overall macroscopic properties and behavior of the material to a great extent. Second, the relaxation rates of the α-relaxation obtained by TMDSC and TMFSC were compared with the thermal and dielectric relaxation rates measured by static FSC. The investigation revealed that the system shows two distinct α-relaxation processes. Furthermore, two separate vitrification mechanisms were also found for a bulk network-former without geometrical confinement as also confirmed by NMR. This was discussed in terms of the intrinsic spatial heterogeneity on a molecular scale, which becomes more pronounced with increasing nanofiller content.

12.
Phys Chem Chem Phys ; 22(33): 18381-18387, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32794532

RESUMO

Inelastic incoherent neutron time-of-flight scattering was employed to measure the low frequency density of states for a series of addition polynorbornenes with bulky side groups. The rigid main chain in combination with the bulky side groups give rise to a microporosity of these polymers in the solid state. The microporosity characterized by the BET surfaces area varies systematically in the considered series. Such materials have some possible application as active separation layer in gas separation membranes. All investigated materials show excess contributions to the Debye type density of states characteristic for glasses known as Boson peak. The maximum position of the Boson peak shifts to lower frequency values with increasing microporosity. Data for PIM-1 and Matrimid included for comparison are in good agreement to this dependency. This result supports the sound wave interpretation of the Boson peak.

13.
Soft Matter ; 16(23): 5406-5421, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32490484

RESUMO

The complex effects of nanoparticles on a thermosetting material based on an anhydride cured DGEBA/boehmite nanocomposite with different particle concentrations are considered. A combination of X-ray scattering, calorimetry, including fast scanning calorimetry and temperature modulated calorimetry, and dielectric spectroscopy was employed to study the structure, the vitrification kinetics and the molecular dynamics of the nanocomposites. For the first time in the literature, for an epoxy-based composite, a detailed analysis of the X-ray data was carried out. Moreover, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking densities, indicated by two separate dynamic glass transitions. The glass transition temperature decreases with increasing nanoparticle concentration, resulting from a change in the crosslinking density. Moreover, on the one hand, for the nanocomposites, the incorporation of nanofiller increased the number of mobile segments for low nanoparticle concentrations, due to the altered crosslinking density. On the other hand, for higher loading degrees, the number of mobile segments decreased, resulting from the formation of an immobilized interphase (RAF). The simultaneous mobilization and immobilization of the segmental dynamics cannot be separated unambiguously. By taking the sample with the highest number of mobile segments as a reference state, it was possible to estimate the amount of RAF.

14.
Eur Phys J E Soft Matter ; 42(8): 101, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31396769

RESUMO

Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface.

15.
ACS Macro Lett ; 8(8): 1022-1028, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35619481

RESUMO

Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships, including physical aging. In this context, the glass transition plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs before their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs.

16.
Phys Chem Chem Phys ; 20(8): 5626-5635, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29411805

RESUMO

For the first time, the molecular mobility of two linear-shaped tetramethylated guanidinium triflate ionic liquid crystals (ILCs) having different lengths of alkyl chains was investigated using a combination of broadband dielectric spectroscopy (BDS) and specific heat spectroscopy (SHS). By self-assembly, these ILCs can form a hexagonal ordered mesophase besides plastic crystalline phases and the isotropic state. Three dielectric active processes were found using BDS for both samples. At low temperatures, a γ-process in the plastic crystalline state is observed which is assigned to localized fluctuations of methyl groups including nitrogen atoms in the guanidinium head. At higher temperatures but still in the plastic crystalline state, an α1-process takes place. An α2-process was detected using SHS but with a completely different temperature dependence of the relaxation times than that of the α1-relaxation. This result is discussed in detail, and different molecular assignments of the processes are suggested. At even higher temperatures, electrical conductivity is detected and an increase in the DC conductivity by four orders of magnitude at the phase transition from the plastic crystalline to the hexagonal columnar mesophase is found. This result is traced to a change in the charge transport mechanism from a delocalized electron hopping in the stacked aromatic systems (in the plastic phase) to one dominated by an ionic conduction in the quasi-1D ion channels formed along the supermolecular columns in the ILC hexagonal mesophases.

17.
ACS Appl Mater Interfaces ; 9(42): 37289-37299, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28984128

RESUMO

Broadband dielectric spectroscopy (BDS) was employed to investigate the glassy dynamics of thin films (7-200 nm) of a poly(vinyl methyl ether) (PVME)/polystyrene (PS) blend (50:50 wt %). For BDS measurements, nanostructured capacitors (NSCs) were employed, where films are allowed a free surface. This method was applied for film thicknesses up to 36 nm. For thicker films, samples were prepared between crossed electrode capacitors (CECs). The relaxation spectra of the films showed multiple processes. The first process was assigned to the α-relaxation of a bulklike layer. For films measured by NSCs, the rates of α-relaxation were higher compared to those of the bulk blend. This behavior was related to the PVME-rich free surface layer at the polymer/air interface. The second process was observed for all films measured by CECs (process X) and the 36 nm film measured by NSCs (process X2). This process was assigned to fluctuations of constraint PVME segments by PS. Its activation energy was found to be thickness-dependent because of the evidenced thickness dependency of the compositional heterogeneity. Finally, a third process with an activated temperature dependence was observed for all films measured by NSCs (process X1). It resembled the molecular fluctuations in an adsorbed layer found for thin films of pure PVME, and thus, it is assigned accordingly. This process undergoes an extra confinement because of frozen adsorbed PS segments at the polymer/substrate interface. To our knowledge, this is the first example where confinement-induced changes were observed by BDS for blend thin films.

18.
J Chem Phys ; 146(20): 203321, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571328

RESUMO

Specific heat spectroscopy (SHS) employing AC nanochip calorimetry was used to investigate the glassy dynamics of ultra-thin films (thicknesses: 10 nm-340 nm) of a polymer blend, which is miscible in the bulk. In detail, a Poly(vinyl methyl ether) (PVME)/Polystyrene (PS) blend with the composition of 25/75 wt. % was studied. The film thickness was controlled by ellipsometry while the film topography was checked by atomic force microscopy. The results are discussed in the framework of the balance between an adsorbed and a free surface layer on the glassy dynamics. By a self-assembling process, a layer with a reduced mobility is irreversibly adsorbed at the polymer/substrate interface. This layer is discussed employing two different scenarios. In the first approach, it is assumed that a PS-rich layer is adsorbed at the substrate. Whereas in the second approach, a PVME-rich layer is suggested to be formed at the SiO2 substrate. Further, due to the lower surface tension of PVME, with respect to air, a nanometer thick PVME-rich surface layer, with higher molecular mobility, is formed at the polymer/air interface. By measuring the glassy dynamics of the thin films of PVME/PS in dependence on the film thickness, it was shown that down to 30 nm thicknesses, the dynamic Tg of the whole film was strongly influenced by the adsorbed layer yielding a systematic increase in the dynamic Tg with decreasing the film thickness. However, at a thickness of ca. 30 nm, the influence of the mobile surface layer becomes more pronounced. This results in a systematic decrease in Tg with the further decrease of the film thickness, below 30 nm. These results were discussed with respect to thin films of PVME/PS blend with a composition of 50/50 wt. % as well as literature results.

19.
ACS Appl Mater Interfaces ; 9(8): 7535-7546, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28155271

RESUMO

A combination of nanosized dielectric relaxation (BDS) and thermal spectroscopy (SHS) was utilized to characterize the dynamics of thin films of poly(vinyl methyl ether) (PVME) (thicknesses: 7-160 nm). For the BDS measurements, a recently designed nanostructured electrode system is employed. A thin film is spin-coated on an ultraflat highly conductive silicon wafer serving as the bottom electrode. As top electrode, a highly conductive wafer with nonconducting nanostructured SiO2 nanospacers with heights of 35 or 70 nm is assembled on the bottom electrode. This procedure results in thin supported films with a free polymer/air interface. The BDS measurements show two relaxation processes, which are analyzed unambiguously for thicknesses smaller than 50 nm. The relaxation rates of both processes have different temperature dependencies. One process coincides in its position and temperature dependence with the glassy dynamics of bulk PVME and is ascribed to the dynamic glass transition of a bulk-like layer in the middle of the film. The relaxation rates were found to be thickness independent as confirmed by SHS. Unexpectedly, the relaxation rates of the second process obey an Arrhenius-like temperature dependence. This process was not observed by SHS and was related to the constrained fluctuations in a layer, which is irreversibly adsorbed at the substrate with a heterogeneous structure. Its molecular fluctuations undergo a confinement effect resulting in the localization of the segmental dynamics. To our knowledge, this is the first report on the molecular dynamics of an adsorbed layer in thin films.

20.
ACS Macro Lett ; 6(10): 1156-1161, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35650935

RESUMO

The discussions on the nanoconfinement effect on the glass transition and glassy dynamics phenomena have yielded many open questions. Here, the thickness dependence of the thermal glass transition temperature Tgtherm of thin films of a PVME/PS blend is investigated by ellipsometry. Its thickness dependence was compared to that of the dynamic glass transition (measured by specific heat spectroscopy) and the deduced Vogel temperature (T0). While Tgtherm and T0 showed a monotonous increase, with decreasing film thickness, the dynamic glass transition temperature (Tgdyn) measured at a finite frequency showed a nonmonotonous dependence that peaks at 30 nm. This was discussed by assuming different cooperativity length scales at these temperatures, which have different sensitivities to composition and thickness. This nonmonotonous thickness dependence of Tgdyn disappears for frequencies characteristic for T0. Further analysis of the fragility parameter showed a change in the glassy dynamics from strong to fragile, with decreasing film thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA