Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
PLoS One ; 19(7): e0303808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959277

RESUMO

Calcium Hydroxide-based endodontic sealer loaded with antimicrobial agents have been commonly employed in conventional root canal treatment. These sealers are not effective against E. faecalis due to the persistent nature of this bacterium and its ability to evade the antibacterial action of calcium hydroxide. Therefore, endodontic sealer containing Carbon nanodots stabilized silver nanoparticles (CD-AgNPs) was proposed to combat E. faecalis. The therapeutic effect of CD-AgNPs was investigated and a new cytocompatible Calcium Hydroxide-based endodontic sealer enriched with CD-AgNPs was synthesized that exhibited a steady release of Ag+ ions and lower water solubility at 24 hours, and enhanced antibacterial potential against E. faecalis. CD-AgNPs was synthesized and characterized morphologically and compositionally by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy (FTIR), and UV-Vis Spectroscopy, followed by optimization via minimum inhibitory concentration (MIC) determination against E. faecalis by broth microdilution technique and Cytotoxicity analysis against NIH3T3 cell lines via Alamar Blue assay. Calcium hydroxide in distilled water was taken as control (C), Calcium hydroxide with to CD-AgNPs (5mg/ml and 10mg/ml) yielded novel endodontic sealers (E1 and E2). Morphological and chemical analysis of the novel sealers were done by SEM and FTIR; followed by in vitro assessment for antibacterial potential against E. faecalis via agar disc diffusion method, release of Ag+ ions for 21 days by Atomic Absorption Spectrophotometry and water solubility by weight change for 21 days. CD-AgNPs were 15-20 nm spherical-shaped particles in uniformly distributed clusters and revealed presence of constituent elements in nano-assembly. FTIR spectra revealed absorption peaks that correspond to various functional groups. UV-Vis absorption spectra showed prominent peaks that correspond to Carbon nanodots and Silver nanoparticles. CD-AgNPs exhibited MIC value of 5mg/ml and cytocompatibility of 84.47% with NIH3T3 cell lines. Novel endodontic sealer cut-discs revealed irregular, hexagonal particles (100-120 nm) with aggregation and rough structure with the presence of constituent elements. FTIR spectra of novel endodontic sealers revealed absorption peaks that correspond to various functional groups. Novel endodontic sealers exhibited enhanced antibacterial potential where E-2 showed greatest inhibition zone against E. faecalis (6.3±2 mm), a steady but highest release of Ag+ ions was exhibited by E-1 (0.043±0.0001 mg/mL) and showed water solubility of <3% at 24 hours where E-2 showed minimal weight loss at all time intervals. Novel endodontic sealers were cytocompatible and showed enhanced antibacterial potential against E. faecalis, however, E2 outperformed in this study in all aspects.


Assuntos
Antibacterianos , Hidróxido de Cálcio , Carbono , Enterococcus faecalis , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Materiais Restauradores do Canal Radicular , Prata , Prata/química , Prata/farmacologia , Hidróxido de Cálcio/química , Hidróxido de Cálcio/farmacologia , Animais , Camundongos , Nanopartículas Metálicas/química , Materiais Restauradores do Canal Radicular/química , Materiais Restauradores do Canal Radicular/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Células NIH 3T3 , Antibacterianos/farmacologia , Antibacterianos/química , Carbono/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Mol Med (Berl) ; 102(6): 761-771, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38653825

RESUMO

Epilepsy is a neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to diverse etiology, pathobiology, and pharmacotherapy-resistant variants. The anticonvulsive effects of herbal leads with biocompatibility and toxicity considerations have attracted much interest, inspiring mechanistic analysis with the view of their use for engagement of new targets and combination with antiseizure pharmacotherapies. This article presents a comprehensive overview of the key molecular players and putative action mechanisms of the most common antiepileptic herbals demonstrated in tissue culture and preclinical models. From the review of the literature, it emerges that their effects are mediated via five distinct mechanisms: (1) reduction of membrane excitability through inhibition of cation channels, (2) improvement of mitochondrial functions with antioxidant effects, (3) enhancement in synaptic transmission mediated by GABAA receptors, (4) improvement of immune response with anti-inflammatory action, and (5) suppression of protein synthesis and metabolism. While some of the primary targets and action mechanisms of herbal anticonvulsants (1, 3) are shared with antiseizure pharmacotherapies, herbal leads also engage with distinct mechanisms (2, 4, and 5), suggesting new drug targets and opportunities for their integration with antiseizure medications. Addressing outstanding questions through research and in silico modeling should facilitate the future use of herbals as auxiliary therapy in epilepsy and guide the development of treatment of pharmacoresistant seizures through rigorous trials and regulatory approval.


Assuntos
Anticonvulsivantes , Humanos , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , Animais , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo
3.
Biomed Mater ; 19(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38387057

RESUMO

Hard tissue regenerative mesoporous bioactive glass (MBG) has traditionally been synthesized using costly and toxic alkoxysilane agents and harsh conditions. In this study, MBG was synthesized using the cheaper reagent SiO2by using a co-precipitation approach. The surface properties of MBG ceramic were tailored by functionalizing with amino and carboxylic groups, aiming to develop an efficient drug delivery system for treating bone infections occurring during or after reconstruction surgeries. The amino groups were introduced through a salinization reaction, while the carboxylate groups were added via a chain elongation reaction. The MBG, MBG-NH2, and MBG-NH-COOH were analyzed by using various techniques: x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy and energy-dispersive x-ray spectroscopy. The XRD results confirmed the successful preparation of MBG, and the FTIR results indicated successful functionalization. BET analysis revealed that the prepared samples were mesoporous, and functionalization tuned their surface area and surface properties. Cefixime, an antibiotic, was loaded onto MBG, MBG-NH2, and MBG-NH-COOH to test their drug-carrying capacity. Comparatively, MBG-NH-COOH showed good drug loading and sustained release behavior. The release of the drug followed the Fickian diffusion mechanism. All prepared samples displayed favorable biocompatibility at higher concentration in the Alamar blue assay with MC3T3 cells and exhibited the good potential for hard tissue regeneration, as carbonated hydroxyapatite formed on their surfaces in simulated body fluid.


Assuntos
Cerâmica , Engenharia Tecidual , Engenharia Tecidual/métodos , Cerâmica/química , Durapatita/química , Sistemas de Liberação de Medicamentos , Vidro/química , Porosidade
4.
Inflammopharmacology ; 32(2): 1489-1498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37962696

RESUMO

Ten sesquiterpene lactones isolated from Anvillea garcinii (Burm.f.) DC ethanolic extract were assessed for their anti-inflammatory potential by myeloperoxidase (MPO) activity assignment, and mice paw swelling model. 3α,4α-10ß-trihydroxy-8α-acetyloxyguaian-12,6α-olide (1), epi-vulgarin (3), 9a-hydroxyparthenolide (4), garcinamine C (7), garcinamine D (8), garcinamine E (9), and 4, 9-dihydroxyguaian-10(14)-en-12-olide (10) showed explicit anti-inflammatory activity in rodent paw edema and MPO assignment. The findings of this study showed that the α-methylene γ-lactone moiety does not always guarantee an anti-inflammatory effect, but the presence of proline at the C3 of the lactone ring improves the binding of sesquiterpene lactones with MPO isoenzymes, resulting in a more potent inhibition.


Assuntos
Sesquiterpenos de Guaiano , Sesquiterpenos , Camundongos , Animais , Sesquiterpenos de Guaiano/farmacologia , Anti-Inflamatórios/farmacologia , Sesquiterpenos/farmacologia , Lactonas/farmacologia
5.
Phys Chem Chem Phys ; 25(30): 20430-20450, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466347

RESUMO

Density functional theory (DFT) calculations were performed for a series of supramolecular assemblies containing azobenzene (Azo-X where X = I, Br and H) and alkoxystilbazole subunits to evaluate their electronic, linear and nonlinear optical properties. These assemblies are derivatives of azobenzene, obtained by the substitution of electron-withdrawing and electron-donating groups onto the molecular skeleton. The interaction energies (Eint) of all the designed supramolecular complexes (IA-IF, IIA-IIF and IIIA-IIIF) range from -1.0 kcal mol-1 to -7.7 kcal mol-1. The electronic properties of these hydrogen/halogen bond driven supramolecular assemblies such as vertical ionization energies (VIE), HOMO-LUMO energy gap (GH-L), excitation energies, density of states (DOS) and natural population (NPA) analyses were also computed. The non-covalent interaction index (NCI) and quantum theory of atoms in molecules (QTAIM) analyses were also performed to validate the nature of inter- and intra-molecular interactions in these complexes. A substantial enhancement in the first hyperpolarizability (ß0) values of the designed supramolecular complexes was observed, which is driven by the charge transfer from the pyridyl moiety of alkoxystilbazole to Azo-X. The highest ß0 value of 1.3 × 104 au was observed for the supramolecular complex of p-nitro substituted azobenzene with alkoxystilbazole (ID complex). Moreover, the results show that the substitution of electron-withdrawing groups on Azo-X can also bring larger ß0 values for such complexes. It was confirmed on a purely theoretical basis that both the types of noncovalent interactions present and the substituent group incorporated influence the nonlinear optical (NLO) response of the systems. Furthermore, the ß0 values of the E (trans) and Z (cis) forms were compared to demonstrate the two-way photoinduced switching mechanism.

6.
Plants (Basel) ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904007

RESUMO

Breast cancer (BC) is known to be the most common malignancy among women throughout the world. Plant-derived natural products have been recognized as a great source of anticancer drugs. In this study, the efficacy and anticancer potential of the methanolic extract of Monotheca buxifolia leaves using human breast cancer cells targeting WNT/ß-catenin signaling was evaluated. We used methanolic and other (chloroform, ethyl acetate, butanol, and aqueous) extracts to discover their potential cytotoxicity on breast cancer cells (MCF-7). Among these, the methanol showed significant activity in the inhibition of the proliferation of cancer cells because of the presence of bioactive compounds, including phenols and flavonoids, detected by a Fourier transform infrared spectrophotometer and by gas chromatography mass spectrometry. The cytotoxic effect of the plant extract on the MCF-7 cells was examined by MTT and acid phosphatase assays. Real-time PCR analysis was performed to measure the mRNA expression of WNT-3a and ß-catenin, along with Caspase-1,-3,-7, and -9 in MCF-7 cells. The IC50 value of the extract was found to be 232 µg/mL and 173 µg/mL in the MTT and acid phosphatase assays, respectively. Dose selection (100 and 300 µg/mL) was performed for real-time PCR, Annexin V/PI analysis, and Western blotting using Doxorubicin as a positive control. The extract at 100 µg/mL significantly upregulated caspases and downregulated the WNT-3a and ß-catenin gene in MCF-7 cells. Western blot analysis further confirmed the dysregulations of the WNT signaling component (*** p< 0.0001). The results showed an increase in the number of dead cells in methanolic extract-treated cells in the Annexin V/PI analysis. Our study concludes that M. buxifolia may serve as an effective anticancer mediator through gene modulation that targets WNT/ß-catenin signaling, and it can be further characterized using more powerful experimental and computational tools.

7.
Front Cell Dev Biol ; 11: 1131638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819094
8.
Front Cell Dev Biol ; 11: 1102721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819095
9.
Biol Trace Elem Res ; 201(11): 5213-5229, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36694071

RESUMO

Polycystic ovarian syndrome (PCOS) is considered the most frequent gynecological endocrine disorder that causes anovulatory infertility. The current study aimed to investigate the potential significance of selenium nanoparticles (SeNPs), an IL-1 inhibitor, in the treatment of letrozole-induced PCOS in rats that satisfied the metabolic and endocrine parameters found in PCOS patients. Letrozole (2 ppm, per orally, p.o.) was given orally to female Wistar rats for 21 days to develop PCOS. After PCOS induction, rats were given SeNPs (25 ppm/day, p.o.), SeNPs (50 ppm/day, p.o.), or metformin (2 ppm/day, p.o.) for 14 days. PCOS was associated with an increase in body weight, ovarian weight, ovarian size, and cysts, as well as an increase in blood testosterone, luteinizing hormone (LH), and insulin, glycaemia, and lipid profile levels. The SeNP administration decreased all of these variables. Furthermore, SeNPs significantly reduced letrozole-induced oxidative stress in the ovaries, muscles, and liver by decreasing elevated levels of malondialdehyde and total nitrite while raising suppressed levels of superoxide dismutase and catalase. SeNPs increased the amounts of the protective proteins Kelch-like ECH-associated protein 1 (Keap-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and OH-1. It was depicted from the study that SeNPs reduce the upregulation of inflammatory cytokines that are interleukin 6 (IL-6), tumour necrosis factor α (TNF-α), and the interleukin 1 (IL-1). Our findings show that SeNPs, through their antioxidant and anti-inflammatory characteristics, alleviate letrozole-induced PCOS.


Assuntos
Síndrome do Ovário Policístico , Selênio , Humanos , Ratos , Feminino , Animais , Letrozol/efeitos adversos , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Ratos Wistar , Selênio/uso terapêutico , Interleucina-1 , Modelos Animais de Doenças
10.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807450

RESUMO

Roots of Rondeletia odorata are a rich source of phytochemicals with high antioxidant potential and thus may possess health benefits. This study used the LC-MS technique to identify phytoconstituents in R. odorata roots extract/fractions. Results revealed that n-butanol fraction and ethanolic extract contained total phenolic and flavonoid contents with values of 155.64 ± 0.66 mgGAE/g DE and 194.94 ± 0.98 mgQE/g DE, respectively. Significant potential of antioxidants was observed by DPPH, CUPRAC and FRAP methods while the ABTS method showed moderate antioxidant potential. Maximum % inhibition for urease, tyrosinase and carbonic anhydrase was shown by ethanolic extract (73.39 ± 1.11%), n-butanol soluble fraction (80.26 ± 1.59%) and ethyl acetate soluble fraction (76.50 ± 0.67%) which were comparable with thiourea (standard) (98.07 ± 0.74%), kojic acid (standard) (98.59 ± 0.92%) and acetazolamide (standard) (95.51 ± 1.29%), respectively, while all other extract/fractions showed moderate inhibition activity against these three enzymes. Hemolytic activity was also observed to range from 18.80 ± 0.42 to 3.48 ± 0.69% using the standard (triton X-100) method. In total, 28 and 20 compounds were identified tentatively by LC-MS analysis of ethanolic extract and n-butanol soluble fraction, respectively. Furthermore, molecular docking was undertaken for major compounds identified by LC-MS for determining binding affinity between enzymes (urease, tyrosinase and carbonic anhydrase) and ligands. It was concluded that active phytochemicals were present in roots of R. odorata with potential for multiple pharmacological applications and as a latent source of pharmaceutically important compounds. This should be further explored to isolate important constituents that could be used in treating different diseases.


Assuntos
Antioxidantes , Anidrases Carbônicas , 1-Butanol , Antioxidantes/química , Diuréticos , Hemolíticos , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Urease
11.
Dalton Trans ; 51(21): 8437-8453, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35593348

RESUMO

Mixed superalkali clusters are a source of excess electrons, as their vertical ionization energies (2.81-3.36 eV) are much lower than those of alkali metals (even cesium (∼3.85 eV)) and the superalkali Li3O (3.42 eV). In the present work, the geometric, electronic, and nonlinear optical (NLO) properties of mixed superalkali cluster-doped B12N12 nanocages are studied theoretically. All complexes, A-G, have very high interaction energies (-98.02 to -123.13 kcal mol-1) and are thermodynamically stable when compared to previously reported Li3O@B12N12 (-92.71 kcal mol-1). The designed complexes have smaller HOMO-LUMO energy gaps (3.36-4.27 eV) than pristine B12N12 (11.13 eV). Charge transfer in the complexes is studied through natural population analysis and non-bonding interactions are evaluated through quantum theory of atoms in molecules (QTAIM) and non-covalent interaction analyses. These complexes have absorption maxima (1076-1486 nm) in the near-infrared region (NIR) and they are transparent in the UV region. The first hyperpolarizability of complex C is 1.7 × 107 au, which is much higher than the value of 3.7 × 104 au for a pure Li3O superalkali-doped B12N12 complex calculated at the same level of theory, as reported by Sun et al. (Dalton Trans., 2016, 45, 7500-7509). The large second hyperpolarizability values also reflect the enhanced nonlinear optical response. The best computed values for the electro-optical Pockels effect, second harmonic generation, and hyper-Rayleigh scattering are 3.29 × 1010 au, 1.17 × 1010 au, and 6.71 × 106 au, respectively. Furthermore, the electro-optic dc-Kerr effect and electric-field-induced second harmonic generation have maximum values of 3.96 × 1011 au and 3.46 × 1010 au at 1064 nm. There are enhancements in the quadratic nonlinear refractive index (n2) values for complexes A-G, with a highest n2 value of 3.35 × 10-8 cm2 W-1 at 1064 nm. These results suggest that mixed-superalkali-doped B12N12 nanoclusters are potential candidates when designing high-performance NLO materials.

12.
Molecules ; 27(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458576

RESUMO

The use of complementary herbal medicines has recently increased in an attempt to find effective alternative therapies that reduce the adverse effects of chemical drugs. Portulacaria afra is a rich source of phytochemicals with high antioxidant activity, and thus may possess health benefits. This study used the latest developments in GC-MS coupling with molecular docking techniques to identify and quantify the phytoconstituents in P. afra tissue extracts. The results revealed that n-butanol P. afra (BUT-PA) dry extracts contained total phenolic and flavonoids contents of 21.69 ± 0.28 mgGAE/g and 196.58 ± 6.29 mgGAE/g, respectively. The significant potential of antioxidants was observed through CUPRIC, FRAP, and ABTS methods while the DPPH method showed a moderate antioxidants potential for P. afra. Enzymatic antioxidants, superoxide dismutase, peroxidase and catalase also showed a better response in the BUT-PA dry extracts. The thrombolytic activity of the BUT-PA extracts ranged from 0.4 ± 0.32 to 11.2 ± 0.05%. Similarly, hemolytic activity ranged from 5.76 ± 0.15 to 9.26 ± 0.15% using the standard (triton x) method. The BUTPA and CHPA showed moderate acetylcholinesterase and butrylcholinesterase inhibition, ranging from 40.78 ± 0.52 to 58.97 ± 0.33, compared to galantamine. The carrageenan induced hind-paw edema assay, while BUT-PA extracts showed anti-inflammatory properties in a dose-dependent manner. Furthermore, 20 compounds were identified in the BUTPA extracts by GC-MS. Molecular docking was performed to explore the synergistic effect of the GC-MS-identified compounds on COX-1 and COX-2 inhibition. A high binding affinity was observed for Stigmastan-3, 5-diene, Phthalic acid, 3. Alpha-Hydroxy-5, 16-androstenol. The computed binding energies of the compounds revealed that all the compounds have a synergistic effect, preventing inflammation. It was concluded that active phytochemicals were present in P. afra, with the potential for multiple pharmacological applications as a latent source of pharmaceutically important compounds. This should be further explored to isolate secondary metabolites that can be employed in the treatment of different diseases.


Assuntos
Antioxidantes , Caryophyllales , Acetilcolinesterase , Anti-Inflamatórios/química , Antioxidantes/química , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
13.
Front Neurosci ; 16: 779681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392411

RESUMO

Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked seizures. Currently available antiepileptic drugs have severe side effects and do not offer complete cure. Herbal remedies have been used for centuries to treat many neurodegenerative disorders. Otostegia limbata L. belongs to the largest and medicinally important family Lamiaceae and is distributed in hilly areas of Pakistan. This study was designed to assess the antioxidant, anti-inflammatory, and anticonvulsant potential of O. limbata. The methanolic extract showed significant antioxidant activity assessed by (1,1-diphenyl 2-picrylhydrazyl) free-radical scavenging assay, nitric oxide scavenging, and iron chelation antioxidant assays. The methanolic extract was evaluated for its anticonvulsant effect, employing the pentylenetetrazole (PTZ)-induced mice model of epilepsy. Three different doses of O. limbata (100, 200, and 300 mg/kg) were administered orally 30 min before PTZ [50 mg/kg, intraperitoneal (i.p.)] injection, while diazepam was used as a positive control. The extract at 300 mg/kg significantly decreased the duration and increased the latency of the PTZ-induced seizures. The expression of inflammatory cytokines tumor necrosis factor α (p-TNF-α) and phosphorylated transcription factor nuclear factor kappa B (p-NF-κB), in the cortex and hippocampus of the brains of treated mice were analyzed through enzyme-linked immunosorbent assay and western blot analysis. The morphological changes and number of surviving neurons were recorded through hematoxylin and eosin staining. The seizure score and survival rate of the treated group showed considerable differences as compared to the PTZ group. TNF-α and p-NF-K b expression were downregulated as compared to the PTZ group. The anticonvulsant effect may be the outcome of the antioxidant potential and high levels of phenols and flavonoids detected in the methanolic plant extract through Fourier transform infrared spectrophotometer and gas chromatography-mass spectrometry analysis.

14.
Sci Total Environ ; 824: 153858, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176369

RESUMO

The toxic chemical warfare agents (CWAs) are extremely harmful to the living organisms. Their efficient detection and removal in a limited time span are essential for the human health and environmental security. Twisted nanographenes have great applications in the fields of energy storage and optoelectronics, but their use as sensors is rarely described. Therefore, we have explored the sensitivity and selectivity of twisted nanographene analogues (C32H16, C64H32) towards selected toxic CWAs, including phosgene, thiophosgene and formaldehyde. The interaction between CWAs and twisted nanographenes is mainly interpreted by considering the optimized geometries, adsorption energies, natural bond orbital (NBO), frontier molecular orbital (FMO), non-covalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analyses. The structural geometries show that the central octagon of twisted nanographenes is the most favorable site of interaction. The interaction energies reveal the physisorption of selected CWAs on tNGs surface. The average energy gap change (%EH-La) and % sensitivity are quantitatively determined to evaluate the sensing capability of the twisted nanographenes. Among the selected CWAs molecules, the sensitivity of tNG analogues (C32H16 and C64H32) is superior towards thiophosgene (ThP), which is revealed by the high interaction energies of -8.19 and - 12.17 kcal/mol, respectively. This theoretical study will help experimentalists to devise novel sensors based on twisted nanographenes for the detection of toxic CWAs which may also work efficiently under the humid conditions.


Assuntos
Substâncias para a Guerra Química , Adsorção , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/toxicidade , Humanos
15.
Mol Clin Oncol ; 16(2): 45, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35003743

RESUMO

Thyroid carcinoma (TC) accounts for ~2.1% of newly diagnosed cancer cases. Mutations in KRAS, HRAS, NRAS and BRAF are primary participants in the development and progression of various types of malignancy, including differentiated TC (DTC). Therefore, the present prospective cohort study aimed to screen patients with DTC for variations in RAS gene family and BRAF gene. Exon 1 and 2 of KRAS, HRAS, NRAS and exon 15 of BRAF gene were screened for hotspot mutations in 72 thyroid tumor and adjacent normal tissue samples using di-deoxy Sanger sequencing. HRAS T81C mutation was found in 21% (15 of 72) of DTC tissue samples, therefore this mutation was investigated in blood samples from patients with DTC and controls as a genetic polymorphism. In addition, HRAS T81C genotypes were determined in 180 patients with DTC and 220 healthy controls by performing restriction fragment length polymorphism. BRAF V600E mutation was confined to classical variant of papillary thyoid cancer (CPTC; 44.4%) and was significantly associated with multifocality and lymph node (LN) metastasis. No mutation was found in exons 1 and 2 of KRAS and NRAS and exon 2 of HRAS genes, however, mutation was detected in exon 1 of HRAS gene (codon 27) at nucleotide position 81 in 21% (15 of 72) of DTC tumor tissue samples. Furthermore, HRAS T81C single nucleotide polymorphism was significantly associated with the risk of DTC with variant genotypes more frequently detected in cases compared with controls (P≤0.05). Moreover, frequency of variant genotypes (TC+CC) was significantly higher among DTC cases with no history of smoking, males, greater age, multifocality and LN metatasis compared with healthy controls (P<0.05). BRAF V600E mutation was primarily present in CPTC and associated with an aggressive tumor phenotype but mutations in RAS gene family were not present in patients with DTC. HRAS T81C polymorphism may be involved in the etiopathogenesis of DTC in a Pakistani cohort. Furthermore, testing for the BRAF V600E mutation may be useful for selecting initial therapy and follow-up monitoring.

16.
Crit Rev Anal Chem ; 52(4): 756-767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32985228

RESUMO

Development of economical, sensitive, selective and robust sensors for metal ion sensing is always fascinating for a chemist because traditional routs for their detection involve complicated instrumentation and critical sample preparation procedures. A large number of metal ion detectors including carbon dots (CDs) have been reported for sensitive and selective detection of metal ions. This review comprehensively explores the use of CDs as metallic cation sensors. CDs are being fabricated from variety of carbon sources by employing various synthetic channels. CDs are proved to be efficient colorimetric and fluorimetric detectors due to surface oxygen moieties which are responsible to co-ordinate with metal ions. Doping of CDs with hetero atom such as N, S, B etc. may further enhance their activity toward metal detection. Therefore, designing of CDs having selective sensing properties with low detection limits has gained significant interest.HighlightsCDs have gained much attention as chemical sensors due to their dynamic features i.e. less toxicity, stability, solubility in various solvents, absorption in UV/Vis. region, fluorescence and tunable physico-chemical properties.These are coast effective, sensitive and selective colorimetric and fluorimetric metal ion sensors.Detection of metal ions by CDs involves different mechanisms such as complexation, aggregation, electron transfer, inner filter effect etc.LOD data is an evidence of their greater efficiency.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Íons/química , Metais , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos
17.
Anticancer Agents Med Chem ; 22(1): 40-52, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33622231

RESUMO

Radiations are an efficient treatment modality in cancer therapy. Besides the treatment effects of radiations, the ionizing radiations interact with biological systems and generate reactive oxygen species that interfere with the normal cellular process. Previous investigations have been conducted only on few synthetic radioprotectors, mainly owing to some limiting effects. The nutraceuticals act as efficient radioprotectors to protect the tissues from the deleterious effects of radiation. The main radioprotection mechanism of nutraceuticals is the scavenging of free radicals while other strategies involve modulation of signaling transduction pathways like MAPK (JNK, ERK1/2, ERK5, and P38), NF-kB, cytokines, and their protein regulatory gene expression. The current review is focused on the radioprotective effects of nutraceuticals including vitamin E, -C, organosulphur compounds, phenylpropanoids, and polysaccharides. These natural entities protect against radiation-induced DNA damage. The review mainly entails the antioxidant perspective and radioprotective molecular mechanism of nutraceuticals, DNA repair pathway, anti-inflammation, immunomodulatory effects and regeneration of hematopoietic cells.


Assuntos
Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Neoplasias/prevenção & controle , Animais , Humanos , Radiação Ionizante
18.
Cancer Biomark ; 33(1): 111-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34366324

RESUMO

BACKGROUND: Somatic variations in rearranged during transfection (RET) proto-oncogene acts to influence Thyroid cancer (TC) in a low penetrance manner, but their effects tend to vary between different populations. OBJECTIVE: This case-control study was aimed to evaluate effect of RET G691S, S904S and L769L single nucleotide polymorphisms (SNPs) on the risk for differentiated thyroid carcinoma (DTC). METHODS: A total of 180 patients and 220 controls were genotyped by Polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP). Di-Deoxy Sanger sequencing was performed on 100 samples with variations and 20 wild samples for each amplified exon. In addition, In Silico tools were used to evaluate structural and functional impact of individual SNPs in disease progression. RESULTS: In RET G691S/L769L/S904S SNPs, frequency of variant genotypes in DTC cases was 61.1%, 54.4% and 76.6% as compared to 45.9%, 43.6% and 89.09% in controls respectively (P⩽ 0.05). In Silico analysis revealed that different protein formed due to G691S substitution decreases the stability of 3D structure of protein. The RET G691S and L769L SNP followed "Dominant" but RET S904S SNP confirmed an "Additive" mode of inheritance. CONCLUSION: RET G691S/L769L/S904S SNPs are significantly associated with DTC with G691S SNP declining the stability of final protein product.


Assuntos
Proteínas Proto-Oncogênicas c-ret , Neoplasias da Glândula Tireoide , Estudos de Casos e Controles , Humanos , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-ret/genética , Proto-Oncogenes , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
19.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885867

RESUMO

Metabolic disorders often lead to cardiac complications. Metabolic deregulations during diabetic conditions are linked to mitochondrial dysfunctions, which are the key contributing factors in cardiac hypertrophy. However, the underlying mechanisms involved in diabetes-induced cardiac hypertrophy are poorly understood. In the current study, we initially established a diabetic rat model by alloxan-administration, which was validated by peripheral glucose measurement. Diabetic rats displayed myocardial stiffness and fibrosis, changes in heart weight/body weight, heart weight/tibia length ratios, and enhanced size of myocytes, which altogether demonstrated the establishment of diabetic cardiac hypertrophy (DCH). Furthermore, we examined the expression of genes associated with mitochondrial signaling impairment. Our data show that the expression of PGC-1α, cytochrome c, MFN-2, and Drp-1 was deregulated. Mitochondrial-signaling impairment was further validated by redox-system dysregulation, which showed a significant increase in ROS and thiobarbituric acid reactive substances, both in serum and heart tissue, whereas the superoxide dismutase, catalase, and glutathione levels were decreased. Additionally, the expression levels of pro-apoptotic gene PUMA and stress marker GATA-4 genes were elevated, whereas ARC, PPARα, and Bcl-2 expression levels were decreased in the heart tissues of diabetic rats. Importantly, these alloxan-induced impairments were rescued by N-acetyl cysteine, ascorbic acid, and selenium treatment. This was demonstrated by the amelioration of myocardial stiffness, fibrosis, mitochondrial gene expression, lipid profile, restoration of myocyte size, reduced oxidative stress, and the activation of enzymes associated with antioxidant activities. Altogether, these data indicate that the improvement of mitochondrial dysfunction by protective agents such as N-acetyl cysteine, selenium, and ascorbic acid could rescue diabetes-associated cardiac complications, including DCH.


Assuntos
Acetilcisteína/uso terapêutico , Ácido Ascórbico/uso terapêutico , Cardiomegalia/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Mitocôndrias Cardíacas/metabolismo , Selênio/uso terapêutico , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/sangue , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Cálcio/sangue , Cardiomegalia/sangue , Cardiomegalia/complicações , Cardiomegalia/patologia , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Citocromos c/metabolismo , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Regulação para Baixo , Fator de Transcrição GATA4/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/patologia , Oxirredução , Estresse Oxidativo , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia
20.
Phytochemistry ; 192: 112952, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34534713

RESUMO

The cytochalasan asporychalasin (1) was obtained from the marine fungus Aspergillus oryzae, isolated from the Red Sea sediments collected off Jeddah, Saudi Arabia. The chemical structure of 1 was elucidated by extensive spectroscopic analysis and quantum-mechanical calculations of 13C NMR resonances and ECD to possess an unprecedented 6/6/11-fused tricyclic skeleton, including an isoquinolindione ring in place of the typical isoindolone. Asporychalasin exhibited moderate antiproliferative activity against three human cancer cell lines, lung carcinoma (A549), liver carcinoma (HepG2), and breast carcinoma (MCF7), and no toxicity on zebrafish embryos.


Assuntos
Aspergillus oryzae , Animais , Citocalasinas , Oceano Índico , Estrutura Molecular , Esqueleto , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA