Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
Nat Commun ; 14(1): 4347, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468530

RESUMO

Nirsevimab is a monoclonal antibody that binds to the respiratory syncytial virus (RSV) fusion protein. During the Phase 2b (NCT02878330) and MELODY (NCT03979313) clinical trials, infants received one dose of nirsevimab or placebo before their first RSV season. In this pre-specified analysis, isolates from RSV infections were subtyped, sequenced and analyzed for nirsevimab binding site substitutions; subsequently, recombinant RSVs were engineered for microneutralization susceptibility testing. Here we show that the frequency of infections caused by subtypes A and B is similar across and within the two trials. In addition, RSV A had one and RSV B had 10 fusion protein substitutions occurring at >5% frequency. Notably, RSV B binding site substitutions were rare, except for the highly prevalent I206M:Q209R, which increases nirsevimab susceptibility; RSV B isolates from two participants had binding site substitutions that reduce nirsevimab susceptibility. Overall, >99% of isolates from the Phase 2b and MELODY trials retained susceptibility to nirsevimab.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Lactente , Anticorpos Monoclonais Humanizados/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Proteínas Recombinantes/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/epidemiologia
3.
Lancet Infect Dis ; 23(7): 856-866, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36940703

RESUMO

BACKGROUND: Nirsevimab is an extended half-life monoclonal antibody to the respiratory syncytial virus (RSV) fusion protein that has been developed to protect infants for an entire RSV season. Previous studies have shown that the nirsevimab binding site is highly conserved. However, investigations of the geotemporal evolution of potential escape variants in recent (ie, 2015-2021) RSV seasons have been minimal. Here, we examine prospective RSV surveillance data to assess the geotemporal prevalence of RSV A and B, and functionally characterise the effect of the nirsevimab binding-site substitutions identified between 2015 and 2021. METHODS: We assessed the geotemporal prevalence of RSV A and B and nirsevimab binding-site conservation between 2015 and 2021 from three prospective RSV molecular surveillance studies (the US-based OUTSMART-RSV, the global INFORM-RSV, and a pilot study in South Africa). Nirsevimab binding-site substitutions were assessed in an RSV microneutralisation susceptibility assay. We contextualised our findings by assessing fusion-protein sequence diversity from 1956 to 2021 relative to other respiratory-virus envelope glycoproteins using RSV fusion protein sequences published in NCBI GenBank. FINDINGS: We identified 5675 RSV A and RSV B fusion protein sequences (2875 RSV A and 2800 RSV B) from the three surveillance studies (2015-2021). Nearly all (25 [100%] of 25 positions of RSV A fusion proteins and 22 [88%] of 25 positions of RSV B fusion proteins) amino acids within the nirsevimab binding site remained highly conserved between 2015 and 2021. A highly prevalent (ie, >40·0% of all sequences) nirsevimab binding-site Ile206Met:Gln209Arg RSV B polymorphism arose between 2016 and 2021. Nirsevimab neutralised a diverse set of recombinant RSV viruses, including new variants containing binding-site substitutions. RSV B variants with reduced susceptibility to nirsevimab neutralisation were detected at low frequencies (ie, prevalence <1·0%) between 2015 and 2021. We used 3626 RSV fusion-protein sequences published in NCBI GenBank between 1956 and 2021 (2024 RSV and 1602 RSV B) to show that the RSV fusion protein had lower genetic diversity than influenza haemagglutinin and SARS-CoV-2 spike proteins. INTERPRETATION: The nirsevimab binding site was highly conserved between 1956 and 2021. Nirsevimab escape variants were rare and have not increased over time. FUNDING: AstraZeneca and Sanofi.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Estudos Prospectivos , Projetos Piloto , SARS-CoV-2 , Vírus Sincicial Respiratório Humano/genética , Glicoproteínas , Sítios de Ligação
4.
Crit Care ; 26(1): 355, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380312

RESUMO

BACKGROUND: Ventilator-associated pneumonia caused by Pseudomonas aeruginosa (PA) in hospitalised patients is associated with high mortality. The effectiveness of the bivalent, bispecific mAb MEDI3902 (gremubamab) in preventing PA nosocomial pneumonia was assessed in PA-colonised mechanically ventilated subjects. METHODS: EVADE (NCT02696902) was a phase 2, randomised, parallel-group, double-blind, placebo-controlled study in Europe, Turkey, Israel, and the USA. Subjects ≥ 18 years old, mechanically ventilated, tracheally colonised with PA, and without new-onset pneumonia, were randomised (1:1:1) to MEDI3902 500, 1500 mg (single intravenous dose), or placebo. The primary efficacy endpoint was the incidence of nosocomial PA pneumonia through 21 days post-dose in MEDI3902 1500 mg versus placebo, determined by an independent adjudication committee. RESULTS: Even if the initial sample size was not reached because of low recruitment, 188 subjects were randomised (MEDI3902 500/1500 mg: n = 16/87; placebo: n = 85) between 13 April 2016 and 17 October 2019. Out of these, 184 were dosed (MEDI3902 500/1500 mg: n = 16/85; placebo: n = 83), comprising the modified intent-to-treat set. Enrolment in the 500 mg arm was discontinued due to pharmacokinetic data demonstrating low MEDI3902 serum concentrations. Subsequently, enrolled subjects were randomised (1:1) to MEDI3902 1500 mg or placebo. PA pneumonia was confirmed in 22.4% (n = 19/85) of MEDI3902 1500 mg recipients and in 18.1% (n = 15/83) of placebo recipients (relative risk reduction [RRR]: - 23.7%; 80% confidence interval [CI] - 83.8%, 16.8%; p = 0.49). At 21 days post-1500 mg dose, the mean (standard deviation) serum MEDI3902 concentration was 9.46 (7.91) µg/mL, with 80.6% (n = 58/72) subjects achieving concentrations > 1.7 µg/mL, a level associated with improved outcome in animal models. Treatment-emergent adverse event incidence was similar between groups. CONCLUSIONS: The bivalent, bispecific monoclonal antibody MEDI3902 (gremubamab) did not reduce PA nosocomial pneumonia incidence in PA-colonised mechanically ventilated subjects. Trial registration Registered on Clinicaltrials.gov ( NCT02696902 ) on 11th February 2016 and on EudraCT ( 2015-001706-34 ) on 7th March 2016.


Assuntos
Pneumonia Associada à Ventilação Mecânica , Infecções por Pseudomonas , Animais , Humanos , Adolescente , Pseudomonas aeruginosa , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/prevenção & controle , Respiração Artificial/efeitos adversos , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Método Duplo-Cego , Unidades de Terapia Intensiva , Anticorpos Monoclonais/uso terapêutico , Resultado do Tratamento
5.
Infect Immun ; 90(10): e0020322, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069593

RESUMO

The Gram-negative pathogen Pseudomonas aeruginosa is a common cause of pneumonia in hospitalized patients. Its increasing antibiotic resistance and widespread occurrence present a pressing need for vaccines. We previously showed that a P. aeruginosa type III secretion system protein, PopB, elicits a strong Th17 response in mice after intranasal (IN) immunization and confers antibody-independent protection against pneumonia in mice. In the current study, we evaluated the immunogenicity and protective efficacy in mice of the combination of PopB (purified with its chaperone protein PcrH) and OprF/I, an outer membrane hybrid fusion protein, compared with immunization with the proteins individually either by the intranasal (IN) or subcutaneous (SC) routes. Our results show that after vaccination, a Th17 recall response from splenocytes was detected only in mice vaccinated with PopB/PcrH, either alone or in combination with OprF/I. Mice immunized with the combination of PopB/PcrH and OprF/I had enhanced protection in an acute lethal P. aeruginosa pneumonia model, regardless of vaccine route, compared with mice vaccinated with either alone or adjuvant control. Immunization generated IgG titers against the vaccine proteins and whole P. aeruginosa cells. Interestingly, none of these antisera had opsonophagocytic killing activity, but antisera from mice immunized with vaccines containing OprF/I, had the ability to block IFN-γ binding to OprF/I, a known virulence mechanism. Hence, vaccines combining PopB/PcrH with OprF/I that elicit functional antibodies lead to a broadly and potently protective vaccine against P. aeruginosa pulmonary infections.


Assuntos
Pneumonia , Infecções por Pseudomonas , Camundongos , Animais , Vacinas contra Pseudomonas , Pseudomonas aeruginosa , Infecções por Pseudomonas/prevenção & controle , Células Th17 , Sistemas de Secreção Tipo III , Formação de Anticorpos , Anticorpos Antibacterianos , Proteínas de Bactérias , Imunoglobulina G , Soros Imunes
6.
mSphere ; 7(3): e0013022, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35642538

RESUMO

Nonhealing diabetic foot ulcers (DFU), a major complication of diabetes, are associated with high morbidity and mortality despite current standard of care. Since Staphylococcus aureus is the most common pathogen isolated from nonhealing and infected DFU, we hypothesized that S. aureus virulence factors would damage tissue, promote immune evasion and alter the microbiome, leading to bacterial persistence and delayed wound healing. In a diabetic mouse polymicrobial wound model with S. aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, we report a rapid bacterial proliferation, prolonged pro-inflammatory response and large necrotic lesions unclosed for up to 40 days. Treatment with AZD6389, a three-monoclonal antibody combination targeting S. aureus alpha toxin, 4 secreted leukotoxins, and fibrinogen binding cell-surface adhesin clumping factor A resulted in full skin re-epithelization 21 days after inoculation. By neutralizing multiple virulence factors, AZD6389 effectively blocked bacterial agglutination and S. aureus-mediated cell killing, abrogated S. aureus-mediated immune evasion and targeted the bacteria for opsonophagocytic killing. Neutralizing S. aureus virulence not only facilitated S. aureus clearance in lesions, but also reduced S. pyogenes and P. aeruginosa numbers, damaging inflammatory mediators and markers for neutrophil extracellular trap formation 14 days post initiation. Collectively, our data suggest that AZD6389 holds promise as an immunotherapeutic approach against DFU complications. IMPORTANCE Diabetic foot ulcers (DFU) represent a major complication of diabetes and are associated with poor quality of life and increased morbidity and mortality despite standard of care. They have a complex pathogenesis starting with superficial skin lesions, which often progress to deeper tissue structures up to the bone and ultimately require limb amputation. The skin microbiome of diabetic patients has emerged as having an impact on DFU occurrence and chronicity. DFU are mostly polymicrobial, and the Gram-positive bacterium Staphylococcus aureus detected in more than 95% of cases. S. aureus possess a collection of virulence factors which participate in disease progression and may facilitate growth of other pathogens. Here we show in a diabetic mouse wound model that targeting some specific S. aureus virulence factors with a multimechanistic antibody combination accelerated wound closure and promoted full skin re-epithelization. This work opens promising new avenues for the treatment of DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Infecções Estafilocócicas , Animais , Anticorpos Monoclonais , Bactérias , Pé Diabético/complicações , Pé Diabético/tratamento farmacológico , Camundongos , Pseudomonas aeruginosa , Qualidade de Vida , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Virulência , Fatores de Virulência
7.
MAbs ; 14(1): 2006123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923908

RESUMO

The increasing global occurrence of recalcitrant multi-drug resistant Klebsiella pneumoniae infections warrants the investigation of alternative therapy options, such as the use of monoclonal antibodies (mAbs). We used a target-agnostic phage display approach to K. pneumoniae bacteria lacking bulky, highly variable surface polysaccharides in order to isolate antibodies targeting conserved epitopes among clinically relevant strains. One antibody population contained a high proportion of unique carbohydrate binders, and biolayer interferometry revealed these antibodies bound to lipopolysaccharide (LPS). Antibodies that bound to O1 and O1/O2 LPS were identified. Antibodies were found to promote opsonophagocytic killing by human monocyte-derived macrophages and clearance of macrophage-associated bacteria when assessed using high-content imaging. One antibody, B39, was found to protect mice in a lethal model of K. pneumoniae pneumonia against both O1 and O2 strains when dosed therapeutically. High-content imaging, western blotting and fluorescence-activated cell sorting were used to determine binding to a collection of clinical K. pneumoniae O1 and O2 strains. The data suggests B39 binds to D-galactan-I and D-galactan-II of the LPS of O1 and O2 strains. Thus, we have discovered an mAb with novel binding and functional activity properties that is a promising candidate for development as a novel biotherapeutic for the treatment and prevention of K. pneumoniae infections.


Assuntos
Anticorpos Antibacterianos/imunologia , Epitopos/imunologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Animais , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana Múltipla/imunologia , Epitopos/genética , Humanos , Infecções por Klebsiella/genética , Klebsiella pneumoniae/genética , Lipopolissacarídeos/genética , Camundongos , Opsonização
8.
J Clin Microbiol ; 59(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33087438

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among infants and young children, resulting in annual epidemics worldwide. INFORM-RSV is a multiyear clinical study designed to describe the global molecular epidemiology of RSV in children under 5 years of age by monitoring temporal and geographical evolution of current circulating RSV strains, F protein antigenic sites, and their relationships with clinical features of RSV disease. During the pilot season (2017-2018), 410 RSV G-F gene sequences were obtained from 476 RSV-positive nasal samples collected from 8 countries (United Kingdom, Spain, The Netherlands, Finland, Japan, Brazil, South Africa, and Australia). RSV B (all BA9 genotype) predominated over RSV A (all ON1 genotype) globally (69.0% versus 31.0%) and in all countries except South Africa. Geographic clustering patterns highlighted wide transmission and continued evolution with viral spread. Most RSV strains were from infants of <1 year of age (81.2%), males (56.3%), and patients hospitalized for >24 h (70.5%), with no differences in subtype distribution. Compared to 2013 reference sequences, variations at F protein antigenic sites were observed for both RSV A and B strains, with high-frequency polymorphisms at antigenic site Ø (I206M/Q209R) and site V (L172Q/S173L/K191R) in RSV B strains. The INFORM-RSV 2017-2018 pilot season establishes an important molecular baseline of RSV strain distribution and sequence variability with which to track the emergence of new strains and provide an early warning system of neutralization escape variants that may impact transmission or the effectiveness of vaccines and MAbs under development.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Austrália , Brasil , Criança , Pré-Escolar , Finlândia , Genótipo , Humanos , Lactente , Japão , Masculino , Epidemiologia Molecular , Países Baixos , Filogenia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/genética , África do Sul , Espanha , Reino Unido
9.
BMC Infect Dis ; 20(1): 450, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591017

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is a global cause of severe respiratory morbidity and mortality in infants. While preventive and therapeutic interventions are being developed, including antivirals, vaccines and monoclonal antibodies, little is known about the global molecular epidemiology of RSV. INFORM is a prospective, multicenter, global clinical study performed by ReSViNET to investigate the worldwide molecular diversity of RSV isolates collected from children less than 5 years of age. METHODS: The INFORM study is performed in 17 countries spanning all inhabited continents and will provide insight into the molecular epidemiology of circulating RSV strains worldwide. Sequencing of > 4000 RSV-positive respiratory samples is planned to detect temporal and geographical molecular patterns on a molecular level over five consecutive years. Additionally, RSV will be cultured from a subset of samples to study the functional implications of specific mutations in the viral genome including viral fitness and susceptibility to different monoclonal antibodies. DISCUSSION: The sequencing and functional results will be used to investigate susceptibility and resistance to novel RSV preventive or therapeutic interventions. Finally, a repository of globally collected RSV strains and a database of RSV sequences will be created.


Assuntos
Genoma Viral , Epidemiologia Molecular/métodos , Polimorfismo Genético , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/genética , Anticorpos Monoclonais/uso terapêutico , Antivirais/efeitos adversos , Antivirais/uso terapêutico , Pré-Escolar , Farmacorresistência Bacteriana/genética , Feminino , Genótipo , Humanos , Imunização Passiva , Lactente , Recém-Nascido , Masculino , Estudos Prospectivos , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sincicial Respiratório Humano/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Respir Res ; 21(1): 77, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228581

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by frequent exacerbation phenotypes independent of disease stage. Increasing evidence shows that the microbiota plays a role in disease progression and severity, but long-term and international multicenter assessment of the variations in viral and bacterial communities as drivers of exacerbations are lacking. METHODS: Two-hundred severe COPD patients from Europe and North America were followed longitudinally for 3 years. We performed nucleic acid detection for 20 respiratory viruses and 16S ribosomal RNA gene sequencing to evaluate the bacterial microbiota in 1179 sputum samples collected at stable, acute exacerbation and follow-up visits. RESULTS: Similar viral and bacterial taxa were found in patients from the USA compared to Bulgaria and Czech Republic but their microbiome diversity was significantly different (P < 0.001) and did not impact exacerbation rates. Virus infection was strongly associated with exacerbation events (P < 5E-20). Human rhinovirus (13.1%), coronavirus (5.1%) and influenza virus (3.6%) constitute the top viral pathogens in triggering exacerbation. Moraxella and Haemophilus were 5-fold and 1.6-fold more likely to be the dominating microbiota during an exacerbation event. Presence of Proteobacteria such as Pseudomonas or Staphylococcus amongst others, were associated with exacerbation events (OR > 0.17; P < 0.02) but more strongly associated with exacerbation frequency (OR > 0.39; P < 4E-10), as confirmed by longitudinal variations and biotyping of the bacterial microbiota, and suggesting a role of the microbiota in sensitizing the lung. CONCLUSIONS: This study highlights bacterial taxa in lung sensitization and viral triggers in COPD exacerbations. It provides a global overview of the diverse targets for drug development and explores new microbiome analysis methods to guide future patient management applications.


Assuntos
Bactérias/isolamento & purificação , Pulmão/microbiologia , Pulmão/virologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Vírus/isolamento & purificação , Idoso , Idoso de 80 Anos ou mais , Bactérias/genética , Carga Bacteriana , Progressão da Doença , Europa (Continente)/epidemiologia , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Escarro/microbiologia , Escarro/virologia , Fatores de Tempo , Estados Unidos/epidemiologia , Carga Viral , Vírus/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-32152087

RESUMO

Antibiotics revolutionized the treatment of infectious diseases; however, it is now clear that broad-spectrum antibiotics alter the composition and function of the host's microbiome. The microbiome plays a key role in human health, and its perturbation is increasingly recognized as contributing to many human diseases. Widespread broad-spectrum antibiotic use has also resulted in the emergence of multidrug-resistant pathogens, spurring the development of pathogen-specific strategies such as monoclonal antibodies (MAbs) to combat bacterial infection. Not only are pathogen-specific approaches not expected to induce resistance in nontargeted bacteria, but they are hypothesized to have minimal impact on the gut microbiome. Here, we compare the effects of antibiotics, pathogen-specific MAbs, and their controls (saline or control IgG [c-IgG]) on the gut microbiome of 7-week-old, female, C57BL/6 mice. The magnitude of change in taxonomic abundance, bacterial diversity, and bacterial metabolites, including short-chain fatty acids (SCFA) and bile acids in the fecal pellets from mice treated with pathogen-specific MAbs, was no different from that with animals treated with saline or an IgG control. Conversely, dramatic changes were observed in the relative abundance, as well as alpha and beta diversity, of the fecal microbiome and bacterial metabolites in the feces of all antibiotic-treated mice. Taken together, these results indicate that pathogen-specific MAbs do not alter the fecal microbiome like broad-spectrum antibiotics and may represent a safer, more-targeted approach to antibacterial therapy.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Ácidos e Sais Biliares/metabolismo , DNA Bacteriano/análise , Ácidos Graxos/metabolismo , Fezes/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Organismos Livres de Patógenos Específicos
12.
Influenza Other Respir Viruses ; 14(4): 403-411, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32126161

RESUMO

BACKGROUND: RSV is a leading cause of lower respiratory tract infection in infants. Monitoring RSV glycoprotein sequences is critical for understanding RSV epidemiology and viral antigenicity in the effort to develop anti-RSV prophylactics and therapeutics. OBJECTIVES: The objective is to characterize the circulating RSV strains collected from infants in South Africa during 2015-2017. METHODS: A subset of 150 RSV-positive samples obtained in South Africa from HIV-unexposed and HIV-exposed-uninfected infants from 2015 to 2017, were selected for high-throughput next-generation sequencing of the RSV F and G glycoprotein genes. The RSV G and F sequences were analyzed by a bioinformatic pipeline and compared to the USA samples from the same three-year period. RESULTS: Both RSV A and RSV B co-circulated in South Africa during 2015-2017, with a shift from RSV A (58%-61% in 2015-2016) to RSV B (69%) in 2017. RSV A ON1 and RSV B BA9 genotypes emerged as the most prevalent genotypes in 2017. Variations at the F protein antigenic sites were observed for both RSV A and B strains, with dominant changes (L172Q/S173L) at antigenic site V observed in RSV B strains. RSV A and B F protein sequences from South Africa were very similar to the USA isolates except for a higher rate of RSV A NA1 and RSV B BA10 genotypes in South Africa. CONCLUSION: RSV G and F genes continue to evolve and exhibit both local and global circulation patterns in South Africa, supporting the need for continued national surveillance.


Assuntos
Infecções por HIV/virologia , Filogenia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/genética , Antígenos Virais/genética , Feminino , Genótipo , Infecções por HIV/epidemiologia , Humanos , Lactente , Masculino , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/isolamento & purificação , Análise de Sequência de DNA , África do Sul/epidemiologia
13.
World J Gastroenterol ; 25(33): 4904-4920, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31543682

RESUMO

BACKGROUND: The trans-fat containing AMLN (amylin liver non-alcoholic steatohepatitis, NASH) diet has been extensively validated in C57BL/6J mice with or without the Lepob/Lepob (ob/ob) mutation in the leptin gene for reliably inducing metabolic and liver histopathological changes recapitulating hallmarks of NASH. Due to a recent ban on trans-fats as food additive, there is a marked need for developing a new diet capable of promoting a compatible level of disease in ob/ob and C57BL/6J mice. AIM: To develop a biopsy-confirmed mouse model of NASH based on an obesogenic diet with trans-fat substituted by saturated fat. METHODS: Male ob/ob mice were fed AMLN diet or a modified AMLN diet with trans-fat (Primex shortening) substituted by equivalent amounts of palm oil [Gubra amylin NASH, (GAN) diet] for 8, 12 and 16 wk. C57BL/6J mice were fed the same diets for 28 wk. AMLN and GAN diets had similar caloric content (40% fat kcal), fructose (22%) and cholesterol (2%) level. RESULTS: The GAN diet was more obesogenic compared to the AMLN diet and impaired glucose tolerance. Biopsy-confirmed steatosis, lobular inflammation, hepatocyte ballooning, fibrotic liver lesions and hepatic transcriptome changes were similar in ob/ob mice fed the GAN or AMLN diet. C57BL/6J mice developed a mild to moderate fibrotic NASH phenotype when fed the same diets. CONCLUSION: Substitution of Primex with palm oil promotes a similar phenotype of biopsy-confirmed NASH in ob/ob and C57BL/6J mice, making GAN diet-induced obese mouse models suitable for characterizing novel NASH treatments.


Assuntos
Modelos Animais de Doenças , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Óleo de Palmeira/efeitos adversos , Animais , Biópsia , Dieta Hiperlipídica/efeitos adversos , Humanos , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/patologia , Ácidos Graxos trans/efeitos adversos
14.
Clin Transl Immunology ; 8(7): e01070, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360464

RESUMO

OBJECTIVE: To understand the relationships of Staphylococcus aureus (SA) bacteremic pneumonia (SABP) outcome with patient-specific and SA-specific variables. METHODS: We analysed SA bloodstream isolates and matching sera in SABP patients by sequencing SA isolates (n = 50) and measuring in vitro AT production, haemolytic activity and expression of ClfA and ClfB. Controls were sera from gram-negative bacteremia patients with or without pneumonia and uninfected subjects. Levels of IgGs, IgMs and neutralizing antibodies (NAbs) against SA antigens were quantified and analysed by one-way ANOVA. Associations of patient outcomes with patient variables, antibody levels and isolate characteristics were evaluated by univariate and multivariate logistic regression analyses. RESULTS: SABP patients had higher levels of IgGs against eight virulence factors and anti-alpha toxin (AT) NAbs than uninfected controls. Levels of IgG against AT and IgMs against ClfA, FnbpA and SdrC were higher in clinically cured SABP patients than in clinical failures. Anti-LukAB NAb levels were elevated in all cohorts. Increased odds of cure correlated with higher haemolytic activity of SA strains, longer time between surgery and bacteremia (> 30 days), longer duration of antibiotic therapy, lower acute physiology and total APACHE II scores, lack of persistent fever for > 72 h and higher levels of antibodies against AT (IgG), ClfA (IgM), FnbpA (IgM) and SdrC (IgM). DISCUSSION: Limitations included the cross-sectional observational nature of the study, small sample size and inability to measure antibody levels against all SA virulence factors. CONCLUSION: Our results suggest that SABP patients may benefit from immunotherapy targeting multiple SA antigens.

15.
Sci Rep ; 9(1): 3898, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846850

RESUMO

Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infection in infants and elderly. To understand the evolution of neutralizing epitopes on the RSV glycoprotein (G) and fusion (F) proteins, we conducted a multi-year surveillance program (OUTSMART-RSV) in the US. Analysis of 1,146 RSV samples from 2015-2017 revealed a slight shift in prevalence from RSV A (58.7%) to B (53.7%) between the two seasons. RSV B was more prevalent in elderly (52.9% and 73.4%). Approximately 1% of the samples contained both RSV A and B viruses. All RSV A isolates were ON1 and almost all the B isolates were BA9 genotypes. Compared with the 2013 reference sequences, changes at the F antigenic sites of RSV B were greater than RSV A, which mainly occurred at antigenic sites V (L172Q/S173L at 99.6%), Ø (I206M/Q209K at 18.6%) and IV (E463D at 7%) of RSV B F. Sequence diversities in the G protein second hypervariable region were observed in the duplicated regions for RSV A and B, and at the G stop codon resulting in extension of 7 amino acids (22.1%) for RSV B in 2016-17. Thus, RSV surface glycoproteins are continuously evolving, and continued surveillance is important for the clinical evaluation of immunoprophylactic products.


Assuntos
Antígenos Virais/imunologia , Epitopos/imunologia , Glicoproteínas/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Humanos , Infecções por Vírus Respiratório Sincicial/virologia , Estados Unidos
16.
Clin Transl Immunology ; 7(1): e1009, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484186

RESUMO

Objectives: MEDI4893 is a novel, long-acting human monoclonal antibody targeting Staphylococcus aureus (SA) alpha toxin (AT). This report presents the results of the exploratory analyses from a randomised phase 1 dose-escalation study in healthy human subjects receiving single intravenous MEDI4893 doses or placebo. Methods: Anti-AT antibodies and AT expression were measured as described previously. Nasal swabs were analysed by culture and PCR. Data were summarised by treatment groups and visits by using SAS System Version 9.3. Results: Subjects receiving 2250 or 5000 mg of MEDI4893 had the highest serum anti-AT neutralising antibody (NAb) levels: approximately 180- to 240-, 70- to 100- and sevenfold to 10-fold higher than respective baseline levels at peak, 30 and 360 days, respectively. In these subjects, levels of serum anti-AT NAbs were >3.2 International Units (IU) mL-1 for at least 211 days. In the upper respiratory tract, anti-AT NAb levels increased with MEDI4893 dose. No apparent effect of MEDI4893 on SA nasal colonisation, hla gene sequence or AT expression was observed. Five AT variants were detected, their lytic activity was fully neutralised by MEDI4893. Discussion: Our results indicate that (1) MEDI4893 administration at 2250 and 5000 mg would provide effective immunoprophylaxis against systemic SA disease; (2) MEDI4983 distributes to the upper respiratory tract and retains neutralising activity against AT; and (3) potential for emergence of MEDI4893 resistance is low. Conclusion: Intravenous administration of MEDI4893 maintained levels of anti-AT NAbs in serum and nasal mucosa that may provide effective immunoprophylaxis against SA disease and support continued clinical development of MEDI4893.

17.
Antimicrob Agents Chemother ; 60(9): 5312-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27324766

RESUMO

Staphylococcus aureus infections lead to an array of illnesses ranging from mild skin infections to serious diseases, such endocarditis, osteomyelitis, and pneumonia. Alpha-toxin (Hla) is a pore-forming toxin, encoded by the hla gene, that is thought to play a key role in S. aureus pathogenesis. A monoclonal antibody targeting Hla, MEDI4893, is in clinical development for the prevention of S. aureus ventilator-associated pneumonia (VAP). The presence of the hla gene and Hla protein in 994 respiratory isolates collected from patients in 34 countries in Asia, Europe, the United States, Latin America, the Middle East, Africa, and Australia was determined. Hla levels were correlated with the geographic location, age of the subject, and length of stay in the hospital. hla gene sequence analysis was performed, and mutations were mapped to the Hla crystal structure. S. aureus supernatants containing Hla variants were tested for susceptibility or resistance to MEDI4893. The hla gene was present and Hla was expressed in 99.0% and 83.2% of the isolates, respectively, regardless of geographic region, hospital locale, or age of the subject. More methicillin-susceptible than methicillin-resistant isolates expressed Hla (86.9% versus 78.8%; P = 0.0007), and S. aureus isolates from pediatric patients expressed the largest amounts of Hla. Fifty-seven different Hla subtypes were identified, and 91% of the isolates encoded an Hla subtype that was neutralized by MED4893. This study demonstrates that Hla is conserved in diverse S. aureus isolates from around the world and is an attractive target for prophylactic monoclonal antibody (MAb) or vaccine development.


Assuntos
Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Proteínas Hemolisinas/antagonistas & inibidores , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Anti-Inflamatórios/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Anticorpos Amplamente Neutralizantes , Criança , Pré-Escolar , Sequência Conservada , Monitoramento Epidemiológico , Feminino , Saúde Global , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/imunologia , Humanos , Lactente , Recém-Nascido , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Pneumonia Associada à Ventilação Mecânica/patologia , Conformação Proteica , Análise de Sequência de DNA , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/isolamento & purificação
18.
J Clin Microbiol ; 53(1): 227-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392350

RESUMO

Alpha-toxin is a major Staphylococcus aureus virulence factor. This study evaluated potential relationships between in vitro alpha-toxin expression of S. aureus bloodstream isolates, anti-alpha-toxin antibody in serum of patients with S. aureus bacteremia (SAB), and clinical outcomes in 100 hemodialysis and 100 postsurgical SAB patients. Isolates underwent spa typing and hla sequencing. Serum anti-alpha-toxin IgG and neutralizing antibody levels were measured by using an enzyme-linked immunosorbent assay and a red blood cell (RBC)-based hemolysis neutralization assay. Neutralization of alpha-toxin by an anti-alpha-toxin monoclonal antibody (MAb MEDI4893) was tested in an RBC-based lysis assay. Most isolates encoded hla (197/200; 98.5%) and expressed alpha-toxin (173/200; 86.5%). In vitro alpha-toxin levels were inversely associated with survival (cure, 2.19 µg/ml, versus failure, 1.09 µg/ml; P < 0.01). Both neutralizing (hemodialysis, 1.26 IU/ml, versus postsurgical, 0.95; P < 0.05) and IgG (hemodialysis, 1.94 IU/ml, versus postsurgical, 1.27; P < 0.05) antibody levels were higher in the hemodialysis population. Antibody levels were also significantly higher in patients infected with alpha-toxin-expressing S. aureus isolates (P < 0.05). Levels of both neutralizing antibodies and IgG were similar among patients who were cured and those not cured (failures). Sequence analysis of hla revealed 12 distinct hla genotypes, and all genotypic variants were susceptible to a neutralizing monoclonal antibody in clinical development (MEDI4893). These data demonstrate that alpha-toxin is highly conserved in clinical S. aureus isolates. Higher in vitro alpha-toxin levels were associated with a positive clinical outcome. Although patients infected with alpha-toxin-producing S. aureus exhibited higher anti-alpha-toxin antibody levels, these levels were not associated with a better clinical outcome in this study.


Assuntos
Anticorpos Antibacterianos/imunologia , Bacteriemia , Toxinas Bacterianas/genética , Expressão Gênica , Variação Genética , Proteínas Hemolisinas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antibacterianos/uso terapêutico , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Toxinas Bacterianas/imunologia , Feminino , Genótipo , Proteínas Hemolisinas/imunologia , Hemólise/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias , Coelhos , Diálise Renal/efeitos adversos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/classificação , Falha de Tratamento , Resultado do Tratamento , Adulto Jovem
19.
Biologicals ; 41(4): 247-53, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23665302

RESUMO

The cold-adapted (ca) live attenuated influenza vaccine (LAIV) strains are manufactured in embryonated hens' eggs. Recently, a clonal isolate from Madin Darby Canine Kidney (MDCK) cells was derived and characterized to assess its utility as a potential cell substrate for the manufacturing of LAIV [1]. Since MDCK cells are a transformed continuous cell line [2], and low levels of residual cellular components (DNA and protein) are found in the intermediates and final filled vaccine, we sought to characterize the uptake and clearance of MDCK DNA from tissues in order to assess theoretical risks associated with manufacturing LAIV in MDCK cell culture. In order to address this concern, MDCK DNA uptake and clearance studies were performed in Sprague Dawley rats. DNA extracted from MDCK Master Cell Bank (MCB) cells was administered via an intranasal (IN) or intramuscular (IM) route. Tissue distribution and clearance of MDCK DNA were then examined in fourteen selected tissue types at selected time points post-administration using a quantitative PCR assay specific for canine (SINE) DNA. Results from these studies demonstrate that the uptake and clearance of MDCK DNA from tissues vary depending on the route of administration. When DNA was administered intranasally, as compared to intramuscularly, detectable DNA levels were lower at all time points. Thus, the intranasal route of vaccine administration appears to reduce potential risk associated with residual host cell DNA that may be present in cell culture produced final vaccine products.


Assuntos
DNA/farmacocinética , Administração Intranasal , Animais , Galinhas , DNA/efeitos adversos , DNA/química , DNA/isolamento & purificação , DNA/farmacologia , Cães , Vacinas contra Influenza/isolamento & purificação , Vacinas contra Influenza/farmacologia , Injeções Intramusculares , Células Madin Darby de Rim Canino , Ratos , Vacinas Atenuadas/isolamento & purificação , Vacinas Atenuadas/farmacologia
20.
Biologicals ; 41(3): 201-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23313102

RESUMO

Residual host cell DNA poses potential safety concerns for cell culture-derived vaccines or other biological products. In addition to the quantity of residual DNA, the size distribution is an important measure for determination of its associated risk factor. We have developed a new method for residual DNA size analysis, based on capillary gel electrophoresis (CGE) technology with sensitive laser induced fluorescence detection (LIF). The performance of this method was optimized through empirical selection of appropriate testing conditions and optimized conditions are presented. Examples are given to demonstrate the successful employment of this method for residual DNA size analysis of cell culture-produced vaccine samples.


Assuntos
DNA/análise , Eletroforese Capilar/métodos , Vacinas Virais/biossíntese , Animais , Linhagem Celular , Chlorocebus aethiops , DNA/genética , Fluorescência , Vacinas contra Influenza/biossíntese , Vacinas contra Influenza/genética , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Vacinas contra Vírus Sincicial Respiratório/biossíntese , Vacinas contra Vírus Sincicial Respiratório/genética , Células Vero , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA