Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 15(1): 6161, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039040

RESUMO

Bacteria often thrive in surface-attached communities, where they can form biofilms affording them multiple advantages. In this sessile form, fluid flow is a key component of their environments, renewing nutrients and transporting metabolic products and signaling molecules. It also controls colonization patterns and growth rates on surfaces, through bacteria transport, attachment and detachment. However, the current understanding of bacterial growth on surfaces neglects the possibility that bacteria may modulate their division behavior as a response to flow. Here, we employed single-cell imaging in microfluidic experiments to demonstrate that attached Escherichia coli cells can enter a growth arrest state while simultaneously enhancing their adhesion underflow. Despite utilizing clonal populations, we observed a non-uniform response characterized by bistable dynamics, with co-existing subpopulations of non-dividing and actively dividing bacteria. As the proportion of non-dividing bacteria increased with the applied flow rate, it resulted in a reduction in the average growth rate of bacterial populations on flow-exposed surfaces. Dividing bacteria exhibited asymmetric attachment, whereas non-dividing counterparts adhered to the surface via both cell poles. Hence, this phenotypic diversity allows bacterial colonies to combine enhanced attachment with sustained growth, although at a reduced rate, which may be a significant advantage in fluctuating flow conditions.


Assuntos
Aderência Bacteriana , Biofilmes , Escherichia coli , Aderência Bacteriana/fisiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Biofilmes/crescimento & desenvolvimento , Fenótipo , Microfluídica/métodos , Propriedades de Superfície , Análise de Célula Única , Divisão Celular
2.
Environ Sci Technol ; 58(20): 8878-8888, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38733558

RESUMO

Particulate contaminants, such as microplastics (1 µm to 5 mm) and nanoplastics (<1 µm), are disseminated in many terrestrial environments. However, it is still unclear how particles' properties drive their mobility through soils and aquifers due to (i) poor environmental relevance of the model particles that are studied (e.g., spherical and monodisperse) and (ii) the use of packed bed experiments which do not allow a direct observation of deposition dynamics. Using transparent 2D porous media, this study analyzes deposition dynamics of rough polystyrene fragments with irregular shapes and with a size continuum (≈10 nm to 5 µm). Using in situ and ex situ measurements, particle deposition as a function of size was monitored over time under repulsive conditions. In the absence of natural organic matter (NOM), micrometric particles rapidly deposit and promote the physical interception of smaller nanoparticles by creating local porous roughness or obstacles. In the presence of NOM, differences according to particle size were no longer observed, and all fragments were more prone to being re-entrained, thereby limiting the growth of deposits. This work demonstrates the importance of pore surface roughness and porosity of the pore surface for the deposition of colloidal particles, such as microplastics and nanoplastics, under repulsive conditions.


Assuntos
Microplásticos , Tamanho da Partícula , Nanopartículas/química , Porosidade , Poliestirenos/química
3.
J Hazard Mater ; 436: 129283, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739792

RESUMO

This study assessed the effects of nanoplastics (NPs) using for the very first time microfluidic devices (chip) mimicking transition waters. Three kinds of NPs were tested: crushed NPs from polystyrene pellets (NP-PS), or from Guadeloupe beaches (NP-G); and latex PS (PSL-COOH). The eluted fractions from the microfluidic device showed a low aggregation of NPs. They remained stable over time in the exposure media, with a stabilization of NPs of small sizes (< 500 nm). These chips were thus used for the toxicological assessment of NPs on swamp oysters, Isognomon alatus. Oysters were exposed for 7 days to the chip elution fraction of either NP-G, NP-PS or PSL-COOH (0.34-333 µg.L-1). Gene transcription analyses showed that the tested NPs triggered responses on genes involved in endocytosis, mitochondrial metabolism disruption, oxidative stress, DNA repair, and detoxification. Highest responses were observed after NP-G exposure at low concentrations (1 µg.L-1), as they are originated from the natural environment and accumulated contaminants, enhancing toxicological effects. As salinity influences aggregation and then the bioavailability of NPs, our results demonstrated the importance of using microfluidic devices for ecotoxicological studies on swamp or estuarine species.


Assuntos
Nanopartículas , Ostreidae , Poluentes Químicos da Água , Animais , Exposição Ambiental , Dispositivos Lab-On-A-Chip , Microplásticos/toxicidade , Nanopartículas/metabolismo , Ostreidae/metabolismo , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Environ Sci Technol ; 56(8): 4998-5008, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35353529

RESUMO

Spectral induced polarization (SIP) has the potential for monitoring reactive processes in the subsurface. While strong SIP responses have been measured in response to calcite precipitation, their origin and mechanism remain debated. Here we present a novel geo-electrical millifluidic setup designed to observe microscale reactive transport processes while performing SIP measurements. We induced calcite precipitation by injecting two reactive solutions into a porous medium, which led to highly localized precipitates at the mixing interface. Strikingly, the amplitude of the SIP response increased by 340% during the last 7% increase in precipitate volume. Furthermore, while the peak frequency in SIP response varied spatially over 1 order of magnitude, the crystal size range was similar along the front, contradicting assumptions in the classical grain polarization model. We argue that the SIP response of calcite precipitation in such mixing fronts is governed by Maxwell-Wagner polarization due to the establishment of a precipitate wall. Numerical simulations of the electric field suggested that spatial variation in peak frequency was related to the macroscopic shape of the front. These findings provide new insights into the SIP response of calcite precipitation and highlight the potential of geoelectrical millifluidics for understanding and modeling electrical signatures of reactive transport processes.


Assuntos
Carbonato de Cálcio , Eletricidade , Carbonato de Cálcio/química , Precipitação Química , Porosidade
5.
Environ Sci Technol ; 55(5): 3001-3008, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33566594

RESUMO

The aim of this study is to demonstrate how the flow and diffusion of nanoplastics through a salinity gradient (SG), as observed in mangrove swamps (MSPs), influence their aggregation pathways. These two parameters have never yet been used to evaluate the fate and behavior of colloids in the environment, since they cannot be incorporated into classical experimental setups. Land-sea continuums, such as estuaries and MSP systems, are known to be environmentally reactive interfaces that influence the colloidal distribution of pollutants. Using a microfluidic approach to reproduce the SG and its dynamics, the results show that nanoplastics arriving in a MSP are fractionated. First, a substantial fraction rapidly aggregates to reach the microscale, principally governed by an orthokinetic aggregation process and diffusiophoresis drift. These large nanoplastic aggregates eventually float near the water's surface or settle into the sediment at the bottom of the MSP, depending on their density. The second, smaller fraction remains stable and is transported toward the saline environment. This distribution results from the combined action of the spatial salt concentration gradient and orthokinetic aggregation, which is largely underestimated in the literature. Due to nanoplastics' reactive behavior, the present work demonstrates that mangrove and estuarine systems need to be better examined regarding plastic pollution.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Estuários , Dispositivos Lab-On-A-Chip , Microplásticos , Salinidade , Poluentes Químicos da Água/análise
6.
J Synchrotron Radiat ; 27(Pt 1): 230-237, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868757

RESUMO

A microfluidic laboratory recently opened at Synchrotron SOLEIL, dedicated to in-house research and external users. Its purpose is to provide the equipment and expertise that allow the development of microfluidic systems adapted to the beamlines of SOLEIL as well as other light sources. Such systems can be used to continuously deliver a liquid sample under a photon beam, keep a solid sample in a liquid environment or provide a means to track a chemical reaction in a time-resolved manner. The laboratory provides all the amenities required for the design and preparation of soft-lithography microfluidic chips compatible with synchrotron-based experiments. Three examples of microfluidic systems that were used on SOLEIL beamlines are presented, which allow the use of X-ray techniques to study physical, chemical or biological phenomena.

7.
Soft Matter ; 14(19): 3829-3833, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29718056

RESUMO

The rotation of a sub-millimeter size disk over a water bath is reported. The origin of the rotation arises from the transfer of angular momentum from a plane wave diffracted by an asymmetrical picture printed on the disk. Because of its hydrophobic character, the viscous friction contribution to the rotational motion of the object floating on the air/liquid interface is weak. From the driving optical torque and the steady-state rotation, we measure the contribution of the line tension in the femto-Newton range.

8.
ACS Omega ; 3(6): 6305-6310, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458812

RESUMO

Over the past decades, desalination by reverse osmosis (RO) membranes has attracted increasing attention. Although RO has proven its efficiency, it remains, however, relatively costly because of the use of high-pressure pumps and the low water permeability of conventional cross-linked polymer membranes. One route to improve the desalination performance consists of using membranes made from sub-nanoporous boron nitride (sNBN) monolayers. Indeed, by using molecular dynamics simulations, we report here that the water permeability of such sNBN membranes far exceeds that of conventional RO polymer membranes and is even higher than that of nanoporous graphene while the ion rejection remains close to 100%. At the same time, the molecular mechanism of water and ion transport through sNBN has been elucidated, with special attention paid to the impact of ions on water permeability through sNBN membranes.

10.
Proc Natl Acad Sci U S A ; 114(2): E161-E170, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28007984

RESUMO

Microbes often live in dense communities called biofilms, where competition between strains and species is fundamental to both evolution and community function. Although biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here, we use microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates, we couple a model of flow-biofilm interaction with a game theory analysis. This investigation revealed that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Interações Microbianas , Ecossistema , Teoria dos Jogos , Hidrodinâmica , Modelos Teóricos , Porosidade
11.
Soft Matter ; 12(4): 1041-50, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26573173

RESUMO

The accumulation of colloidal particles to build dense structures from dilute suspensions may follow distinct routes. The mechanical, structural and geometrical properties of these structures depend on local hydrodynamics and colloidal interactions. Using model suspensions flowing into microfabricated porous obstacles, we investigate this interplay by tuning both the flow pattern and the ionic strength. We observe the formation of a large diversity of shapes, and demonstrate that growing structures in turn influence the local velocity pattern, favouring particle deposition either locally or over a wide front. We also show that these structures are labile, stabilised by the flow pushing on them, in low ionic strength conditions, or cohesive, in a gel-like state, at higher ionic strength. The interplay between aggregate cohesion and erosion thus selects preferential growth modes and therefore dictates the final shape of the structure.

12.
Environ Sci Technol ; 48(1): 508-16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24274690

RESUMO

We propose a new experimental set up to characterize mixing and reactive transport in porous media with a high spatial resolution at the pore scale. The analogous porous medium consists of a Hele-Shaw cell containing a single layer of cylindrical solid grains built by soft lithography. On the one hand, the measurement of the local, intrapore, conservative concentration field is done using a fluorescent tracer. On the other hand, considering a fast bimolecular reaction A + B → C occurring as A displaces B, we quantify the rate of product formation from the spatially resolved measurement of the pore scale reaction rate, using a chemiluminescent reaction. The setup provides a dynamical measurement of the local concentration field over 3 orders of magnitude and allows investigating a wide range of Péclet and Damköhler numbers by varying the flow rate within the cell and the local reaction rate. We use it to study the kinetics of the reaction front between A and B. While the advection-dispersion (Fickian) theory, applied at the continuum scale, predicts a scaling of the cumulative mass of product C as MC ∝ √t, the experiments exhibit two distinct regimes in which the produced mass MC evolves faster than the Fickian behavior. In both regimes the front rate of product formation is controlled by the geometry of the mixing interface between the reactants. Initially, the invading solute is organized in stretched lamellae and the reaction is limited by mass transfer across the lamella boundaries. At longer times the front evolves into a second regime where lamellae coalesce and form a mixing zone whose temporal evolution controls the rate of product formation. In this second regime, the produced mass of C is directly proportional to the volume of the mixing zone defined from conservative species. This interesting property is indeed verified from a comparison of the reactive and conservative data. Hence, for both regimes, the direct measurement of the spatial distribution of the pore scale reaction rate and conservative component concentration is shown to be crucial to understanding the departure from the Fickian scaling as well as quantifying the basic mechanisms that govern the mixing and reaction dynamics at the pore scale.


Assuntos
Fenômenos Químicos , Modelos Químicos , Cinética , Tamanho da Partícula , Porosidade , Soluções , Propriedades de Superfície
13.
Langmuir ; 29(50): 15606-13, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24261716

RESUMO

The drying of milk concentrate droplets usually leads to specific particle morphology influencing their properties and their functionality. Understanding how the final shape of the particle is formed therefore represents a key issue for industrial applications. In this study, a new approach to the investigation of droplet-particle conversion is proposed. A single droplet of concentrated globular proteins extracted from milk was deposited onto a hydrophobic substrate and placed in a dry environment. Complementary methods (high-speed camera, confocal microscopy, and microbalance) were used to record the drying behavior of the concentrated protein droplets. Our results showed that whatever the initial concentration, particle formation included three dynamic stages clearly defined by the loss of mass and the evolution of the internal and external shapes of the droplet. A new and reproducible particle shape was related in this study. It was observed after drying a smooth, hemispherical cap-shaped particle, including a uniform protein shell and the nucleation of an internal vacuole. The particle morphology was strongly influenced by the drying environment, the contact angle, and the initial protein concentration, all of which governed the duration of the droplet shrinkage, the degree of buckling, and the shell thickness. These results are discussed in terms of specific protein behaviors in forming a predictable and a characteristic particle shape. The way the shell is formed may be the starting point in shaping particle distortion and thus represents a potential means of tuning the particle morphology.


Assuntos
Proteínas do Leite/química , Vacúolos/química , Dessecação , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Proteínas do Soro do Leite
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 1): 031403, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22060367

RESUMO

We study the behavior of a yield-stress fluid following the impact of a vertically falling sphere. Since the impact produces shear stresses larger than the yield stress, the material in the vicinity of the impact becomes fluidized. The sphere entrains air when it enters the fluid, and the resulting cavity pinches off below the surface. The upper part of this cavity then rebounds upward. For sufficiently fast impacts, a vertical jet is produced by the cavity collapse. While many aspects of this process are similar to that in Newtonian fluids or granular materials, the rheological properties of our target material change the scaling of the cavity pinch-off depth and have a dramatic effect on the height of the jets. The material returns to a solid-like behavior once the stresses due to the impact have relaxed to below the yield stress, leaving a crater in the surface of the material. We find that the diameter of this crater depends nonmonotonically on the impact speed. The crater shape also changes with speed, reflecting the dynamics of the impact process.


Assuntos
Aceleração , Microesferas , Modelos Químicos , Modelos Moleculares , Soluções/química , Simulação por Computador , Módulo de Elasticidade , Viscosidade
15.
Langmuir ; 25(4): 2467-72, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19199743

RESUMO

We have investigated the nonlinear rheology of a soft composite transient network made of a solution of surfactant wormlike micelles (WM) in the semidilute regime that are reversibly bridged by telechelic polymers. The samples are well described, in the linear regime, as two Maxwell fluids components blends, characterized by two markedly different characteristic times. The slow mode is mainly related to the transient network of entangled WM, and the fast mode to the network of telechelic chains. In this paper we investigate the nonlinear viscoelasticity and show that the nonlinear behavior reflects as well the behavior of two coupled networks. On one hand, stress relaxation experiments and time-resolved stress response following the application of a constant shear rate show that, in the weakly nonlinear regime, these novel composite networks stiffen. A fourfold increase of the elastic modulus with respect to the linear value is reached for strain amplitude of about 200%. This strain hardening is due to the nonlinear stretching of the telechelic polymer chains. On the other hand, the samples exhibit shear banding in the highly nonlinear regime, similarly to pure semidilute solutions of WM.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(1 Pt 1): 012201, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17358207

RESUMO

We study the motion of a sphere falling through soft viscoelastic materials when the time scale of the motion is short compared to the elastic relaxation time of the material. We observe shocks generated by the passage of the sphere at Mach numbers greater than 1. The sphere can undergo oscillations before reaching a steady terminal speed, and we show that these oscillations have the same frequency as the shear wave associated with the shock.


Assuntos
Biofísica/métodos , Elasticidade , Movimento (Física) , Oscilometria , Pressão , Propriedades de Superfície , Fatores de Tempo , Vibração , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA