Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Biomed Pharmacother ; 173: 116306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401520

RESUMO

Clinical resistance to EGFR tyrosine kinase inhibitors in non-small-cell lung cancer (NSCLC) remains a significant challenge. Recent studies have indicated that the number of myeloid-derived suppressor cells (MDSCs) increases following gefitinib treatment, correlating with a poor patient response in NSCLC. Our study revealed that gefitinib treatment stimulates the production of CCL2, which subsequently enhances monocyte (M)-MDSC migration to tumor sites. Chidamide, a selective inhibitor of the histone deacetylase subtype, counteracted the gefitinib-induced increase in CCL2 levels in tumor cells. Additionally, chidamide down-regulated the expression of CCR2 in M-MDSCs, inhibiting their migration. Furthermore, chidamide attenuated the immunosuppressive function of M-MDSCs both alone and in combination with gefitinib. Chidamide also alleviated tumor immunosuppression by reducing the number of M-MDSCs in LLC-bearing mice, thereby enhancing the antitumor efficacy of gefitinib. In conclusion, our findings suggest that chidamide can improve gefitinib treatment outcomes, indicating that MDSCs are promising targets in NSCLC.


Assuntos
Aminopiridinas , Benzamidas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Supressoras Mieloides , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Células Supressoras Mieloides/metabolismo , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Imunossupressores/uso terapêutico , Resultado do Tratamento , Resistencia a Medicamentos Antineoplásicos
2.
Front Immunol ; 14: 1243851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818369

RESUMO

Viral pneumonia is a global health burden with a high mortality rate, especially in the elderly and in patients with underlying diseases. Recent studies have found that myeloid-derived suppressor cells (MDSCs) are abundant in these patient groups; however, their roles in the progression of viral pneumonia remain unclear. In this study, we observed a substantial increase in MDSCs in a mouse model of renal ischemia/reperfusion (I/R) injury and in older mice. When intranasal polyinosinic-polycytidylic acid (poly(I:C)) administration was used to mimic viral pneumonia, mice with renal I/R injury exhibited more severe lung inflammation than sham mice challenged with poly(I:C). In addition, MDSC depletion attenuated lung inflammation in mice with I/R injury. Similar results were obtained in older mice compared with those in young mice. Furthermore, adoptive transfer of in vitro-differentiated MDSCs exacerbated poly(I:C)-induced lung inflammation. Taken together, these experimental results suggest that the increased proportion of MDSCs in mice with renal I/R injury and in older mice exacerbates poly(I:C)-induced lung inflammation. These findings have important implications for the treatment and prevention of severe lung inflammation caused by viral pneumonia.


Assuntos
Células Supressoras Mieloides , Pneumonia Viral , Humanos , Camundongos , Animais , Idoso , Poli I-C , Rim , Modelos Animais de Doenças
3.
PLoS One ; 18(10): e0286323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37856461

RESUMO

Circulating tumor cells (CTCs) are present in the blood of cancer patients from the early stage of cancer development, and their presence has been correlated with patient prognosis and treatment responses. Accordingly, CTCs have been attracting attention as a novel biomarker for early detection of cancer and monitoring of treatment responses. However, since patients typically have only a few CTCs per milliliter of blood, development of an accurate and highly sensitive CTC detection method is crucial. We previously developed a CTC detection method using a novel conditionally replicating adenovirus (Ad) that expresses green fluorescence protein (GFP) in a tumor cell-specific manner by expressing the E1 gene using a tumor-specific human telomerase reverse transcriptase (hTERT) promoter (rAdF35-142T-GFP). CTCs were efficiently detected using rAdF35-142T-GFP, but GFP expression levels in the CTCs and production efficiencies of rAdF35-142T-GFP were relatively low. In this study, in order to overcome these problems, we developed four types of novel GFP-expressing conditionally replicating Ads and examined their ability to visualize CTCs in the blood samples of lung cancer patients. Among the four types of novel recombinant Ads, the novel conditionally replicating Ad containing the 2A peptide and the GFP gene downstream of the E1A gene and the adenovirus death protein (ADP) gene in the E3 region (rAdF35-E1-2A-GFP-ADP) mediated the highest number of GFP-positive cells in the human cultured tumor cell lines. Titers of rAdF35-E1-2A-GFP-ADP were significantly higher (about 4-fold) than those of rAdF35-142T-GFP. rAdF35-E1-2A-GFP-ADP and rAdF35-142T-GFP efficiently detected CTCs in the blood of lung cancer patients at similar levels. GFP+/CD45- cells (CTCs) were found in 10 of 17 patients (58.8%) for both types of recombinant Ads.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Adenoviridae/fisiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Tumorais Cultivadas , Linhagem Celular Tumoral
4.
Proc Natl Acad Sci U S A ; 120(3): e2213317120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36634143

RESUMO

There is an urgent need to develop novel drugs to reduce the mortality from severe infectious diseases with the emergence of new pathogens, including Coronavirus disease 2019 (COVID-19). Although current drugs effectively suppress the proliferation of pathogens, immune cell activation, and inflammatory cytokine functions, they cannot completely reduce mortality from severe infections and sepsis. In this study, we focused on the endothelial cell-specific protein, Roundabout 4 (Robo4), which suppresses vascular permeability by stabilizing endothelial cells, and investigated whether enhanced Robo4 expression could be a novel therapeutic strategy against severe infectious diseases. Endothelial-specific overexpression of Robo4 suppresses vascular permeability and reduces mortality in lipopolysaccharide (LPS)-treated mice. Screening of small molecules that regulate Robo4 expression and subsequent analysis revealed that two competitive small mothers against decapentaplegic (SMAD) signaling pathways, activin receptor-like kinase 5 (ALK5)-SMAD2/3 and ALK1-SMAD1/5, positively and negatively regulate Robo4 expression, respectively. An ALK1 inhibitor was found to increase Robo4 expression in mouse lungs, suppress vascular permeability, prevent extravasation of melanoma cells, and decrease mortality in LPS-treated mice. The inhibitor suppressed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced endothelial barrier disruption and decreased mortality in mice infected with SARS-CoV-2. These results indicate that enhancing Robo4 expression is an efficient strategy to suppress vascular permeability and mortality in severe infectious diseases, including COVID-19, and that small molecules that upregulate Robo4 can be potential therapeutic agents against these diseases.


Assuntos
COVID-19 , Endotoxemia , Animais , Camundongos , Receptores de Superfície Celular/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Transdução de Sinais , Regulação para Cima , Endotoxemia/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo
5.
Biochem Biophys Rep ; 33: 101416, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36605123

RESUMO

Myeloid-derived suppressor cells (MDSCs), which accumulate in tumor bearers, are known to suppress anti-tumor immunity and thus promote tumor progression. MDSCs are considered a major cause of resistance against immune checkpoint inhibitors in patients with cancer. Therefore, MDSCs are potential targets in cancer immunotherapy. In this study, we modified an in vitro method of MDSC differentiation. Upon stimulating bone marrow (BM) cells with granulocyte-macrophage colony-stimulating factor in vitro, we obtained both lymphocyte antigen 6G positive (Ly-6G+) and negative (Ly-6G-) MDSCs (collectively, hereafter referred to as conventional MDSCs), which were non-immunosuppressive and immunosuppressive, respectively. We then found that MDSCs differentiated from Ly-6G- BM (hereafter called 6G- BM-MDSC) suppressed T-cell proliferation more strongly than conventional MDSCs, whereas the cells differentiated from Ly-6G+ BM (hereafter called 6G+ BM-MDSC) were non-immunosuppressive. In line with this, conventional MDSCs or 6G- BM-MDSC, but not 6G+ BM-MDSC, promoted tumor progression in tumor-bearing mice. Moreover, we identified that activated glutathione metabolism was responsible for the enhanced immunosuppressive ability of 6G- BM-MDSC. Finally, we showed that Ly-6G+ cells in 6G- BM-MDSC, which exhibited weak immunosuppression, expressed higher levels of Cybb mRNA, an immunosuppressive gene of MDSCs, than 6G+ BM-MDSC. Together, these data suggest that the depletion of Ly-6G+ cells from the BM cells leads to differentiation of immunosuppressive Ly-6G+ MDSCs. In summary, we propose a better method for MDSC differentiation in vitro. Moreover, our findings contribute to the understanding of MDSC subpopulations and provide a basis for further research on MDSCs.

6.
J Control Release ; 354: 35-44, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586673

RESUMO

PEGylated liposomes (PEG-liposomes) are a promising drug delivery vehicle for tumor targeting because of their efficient tumor disposition profiles via the enhanced permeability and retention (EPR) effect. However, tumor targeting of PEG-liposomes, particularly their delivery inside the tumors, is often disturbed by physical barriers in the tumor, including tumor cells themselves, extracellular matrices, and interstitial pressures. In this study, B16 melanoma tumor-bearing mice were injected intravenously with oncolytic reovirus before administration of PEG-liposomes to enhance PEG-liposomes' tumor disposition. Three days after reovirus administration, significant expression of reovirus sigma 3 protein, elevation of apoptosis-related gene expression, and activation of caspase 3 in the tumors were found. Apoptotic cells were found inside the tumors. These data indicated that reovirus efficiently replicated in the tumors and induced apoptosis of tumor cells. The tumor disposition levels of PEG-liposomes were approximately doubled by reovirus pre-administration, compared with a PBS-pretreated group. PEG-liposomes were widely distributed in the tumors of reovirus-pretreated mice, whereas in the PBS-pretreated group, PEG-liposomes were found mainly around or inside the blood vessels in the tumors. Pre-treatment with reovirus also improved the tumor accumulation of PEG-liposomes in human pancreatic BxPC-3 tumors. 3D imaging analysis of whole BxPC-3 tumors demonstrated that pretreatment with reovirus led to the enhancement of PEG-liposome accumulation inside the tumors. Combination treatment with reovirus and paclitaxel-loaded PEG-liposomes (PTX-PEG-liposomes) significantly suppressed B16 tumor growth. These results provide important information for clinical use of combination therapy of reovirus and nanoparticle-based drug delivery system (DDS).


Assuntos
Lipossomos , Melanoma Experimental , Camundongos , Humanos , Animais , Lipossomos/uso terapêutico , Paclitaxel/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Terapia Combinada , Linhagem Celular Tumoral , Polietilenoglicóis/uso terapêutico
7.
Biomedicines ; 10(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35740295

RESUMO

Chimeric antigen receptor expression T (CAR-T) cell therapy has been shown be efficacious against relapsed/refractory B-cell malignant lymphoma and has attracted attention as an innovative cancer treatment. However, cells of solid tumors are less accessible to CAR-T cells; moreover, CAR-T function is decreased in the immunosuppressive state of the tumor microenvironment. Since most tumors induce angiogenesis, we constructed CAR-T cells targeting roundabout homolog 4 (Robo4), which is expressed at high levels in tumor vascular endothelial cells, by incorporating three anti-Robo4 single-chain variable fragments (scFv) that were identified using phage display. We found that binding affinities of the three CARs to mouse and human Robo4 reflected their scFv affinities. More importantly, when each CAR-T cell was assayed in vitro, antigen-specific cytotoxicity, cytokine-producing ability, and proliferation were correlated with binding affinity for Robo4. In vivo, all three T-cells inhibited tumor growth in a B16BL6 murine model, which also correlated with Robo4 binding affinities. However, growth inhibition of mouse Robo4-expressing tumors was observed only in the model with CAR-T cells with the lowest Robo4 affinity. Therefore, at high Robo4 expression, CAR-T in vitro and in vivo were no longer correlated, suggesting that clinical tumors will require Robo4 expression assays.

8.
Front Pharmacol ; 13: 873792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548341

RESUMO

Myeloid-derived suppressor cells (MDSCs) are major immunosuppressive cells that accumulate in tumor-bearing hosts. Since MDSCs suppress anti-tumor immunity and promote tumor progression, they are promising targets for cancer immunotherapy. Granulocyte colony-stimulating factor (G-CSF) is an agent used for the treatment of chemotherapy-induced febrile neutropenia (FN) in patients with cancer. However, several reports have revealed that G-CSF plays crucial immune-related adverse roles in tumor progression through MDSCs. In this study, we showed that MDSCs differentiated in the presence of G-CSF in vitro exhibited enhanced proliferation and immunosuppressive activity compared to those differentiated without G-CSF. RNA sequencing analysis demonstrated that G-CSF enhanced the immunosuppressive function of MDSCs by upregulating gamma-glutamyltransferase (GGT) 1. Moreover, in the EL4 lymphoma-bearing neutropenic mouse model, administration of recombinant G-CSF increased the number of MDSCs and attenuated the anti-cancer effect of chemotherapy. We showed that the combination of GGsTop, a GGT inhibitor, could prevent G-CSF-induced tumor growth, without affecting the promotion of myelopoiesis by G-CSF. These results suggest that targeting GGT1 can mitigate G-CSF-induced enhanced immunosuppressive functions of MDSCs and can eliminate the tumor-promoting effect of G-CSF. Furthermore, GGsTop could be an attractive combination agent during G-CSF treatment for FN in patients with cancer.

9.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409419

RESUMO

To improve the efficacy and safety of chimeric antigen receptor (CAR)-expressing T cell therapeutics through enhanced CAR design, we analysed CAR structural factors that affect CAR-T cell function. We studied the effects of disulphide bonding at cysteine residues and glycosylation in the HD on CAR-T function. We used first-generation CAR[V/28/28/3z] and CAR[V/8a/8a/3z], consisting of a mouse vascular endothelial growth factor receptor 2 (VEGFR2)-specific single-chain variable fragment tandemly linked to CD28- or CD8α-derived HD, transmembrane domain (TMD) and a CD3ζ-derived signal transduction domain (STD). We constructed structural variants by substituting cysteine with alanine and asparagine (putative N-linked glycosylation sites) with aspartate. CAR[V/28/28/3z] and CAR[V/8a/8a/3z] formed homodimers, the former through a single HD cysteine residue and the latter through the more TMD-proximal of the two cysteine residues. The absence of disulphide bonds did not affect membrane CAR expression but reduced antigen-specific cytokine production and cytotoxic activity. CAR[V/28/28/3z] and CAR[V/8a/8a/3z] harboured one N-linked glycosylation site, and CAR[V/8a/8a/3z] underwent considerable O-linked glycosylation at an unknown site. Thus, N-linked glycosylation of CAR[V/28/28/3z] promotes stable membrane CAR expression, while having no effect on the expression or CAR-T cell activity of CAR[V/8a/8a/3z]. Our findings demonstrate that post-translational modifications of the CAR HD influence CAR-T cell activity, establishing a basis for future CAR design.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Linhagem Celular Tumoral , Cisteína/metabolismo , Dissulfetos/metabolismo , Imunoterapia Adotiva , Camundongos , Processamento de Proteína Pós-Traducional , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Pharmaceutics ; 14(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214117

RESUMO

We are interested in promoting the development of transcutaneous immunization using microneedle technology and attempting to apply an adjuvant with transcutaneous immunization to improve the efficacy and reduce the amount of antigen and number of administrations needed. In this study, we collected basic information to help elucidate the mechanism responsible for the transcutaneous adjuvant activity of imiquimod (IMQ), which is a ligand of toll-like receptor (TLR) 7. In mouse groups administered ovalbumin (OVA), the OVA-specific IgG antibody titer of the IMQ-adjuvanted group was higher than that of the group administered OVA alone. No immune response bias due to transcutaneous IMQ administration was observed in terms of IgG1 (T helper cell [Th]2-type IgG subclass) and IgG2c (Th1-type IgG subclass) antibody titers. After the initial immunization, the IMQ-adjuvanted group showed increased migration of Langerhans cells to draining lymph nodes (dLNs) and active proliferation of OVA-specific CD4+ T cells. Transcutaneously administered IMQ did not affect the direction of CD4+ T cell differentiation, while promoted B cell activation and germinal center (GC) B cell differentiation. Immune staining revealed greater GC formation in the dLNs with the IMQ-adjuvanted group than in the OVA-alone group. In the secondary immune response, effector T cells increased in the dLNs and spleen, and effector memory T cells also increased in the spleen in the IMQ-adjuvanted group. In addition, our results suggested that the administration of IMQ enhanced B cell differentiation into plasma cells and GC B cells in the dLNs and spleen. In this study, we partially clarified the mechanism underlying the adjuvant activity of transcutaneously administered IMQ, which is required for the practical application of transcutaneous immunization with IMQ.

11.
Vaccine ; 40(6): 862-872, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998604

RESUMO

Transcutaneous immunization (TCI) is an effective vaccination method that is easier and less painful than the conventional injectable vaccination method. We previously developed self-dissolving microneedle patches (sdMN) and demonstrated that this TCI method has a high vaccination efficacy in mice and humans. To elucidate the mechanism of immune response induction, which is the basis for the efficacy and safety of TCI with sdMN, we examined the local reaction of the skin where sdMN was applied and the kinetics and differentiation status of immune cells in the draining lymph nodes (DLNs). We found that gene expression of the proinflammatory cytokine Il1b and the downstream transcription factor Irf7 was markedly upregulated in skin tissues after sdMN application. Moreover, activation of Langerhans cells and CD207- dermal dendritic cells, which are subsets of antigen-presenting cells (APCs) in the skin, and their migration to the DLNs were promoted. Furthermore, the activated APC subsets promoted CD4+ T cell and B cell differentiation and the formation of germinal centers, which are the sites of high-affinity antibody production. These phenomena associated with sdMN application may contribute to the efficient production of antigen-specific antibodies after TCI using sdMN. These findings provide essential information regarding immune response induction mechanisms for the development and improvement of TCI preparations.


Assuntos
Imunização , Vacinação , Administração Cutânea , Animais , Formação de Anticorpos , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Pele , Vacinação/métodos
12.
Drug Metab Pharmacokinet ; 42: 100432, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974335

RESUMO

Replication-incompetent adenovirus (Ad) vectors have been widely used as gene delivery vehicles in both gene therapy studies and basic studies for gene function analysis due to their highly advantageous properties, which include high transduction efficiencies, relatively large capacities for transgenes, and high titer production. In addition, Ad vectors induce moderate levels of innate immunity and have relatively high thermostability, making them very attractive as potential vaccine vectors. Accordingly, it is anticipated that Ad vectors will be used in vaccines for the prevention of infectious diseases, including Ebola virus disease and acquired immune deficiency syndrome (AIDS). Much attention is currently focused on the potential use of an Ad vector vaccine for coronavirus disease 2019 (COVID-19). In this review, we describe the basic properties of an Ad vector, Ad vector-induced innate immunity and immune responses to Ad vector-produced transgene products. Development of novel Ad vectors which can overcome the drawbacks of conventional Ad vector vaccines and clinical application of Ad vector vaccines to several infectious diseases are also discussed.


Assuntos
Vacinas contra Adenovirus , COVID-19 , Doenças Transmissíveis , Vacinas , Adenoviridae/genética , Vetores Genéticos/genética , Humanos , SARS-CoV-2
13.
Vaccines (Basel) ; 9(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960226

RESUMO

In this study, we investigated the mechanism of transcutaneous adjuvant activity of the CpG-oligonucleotide (K3) in mice. Transcutaneous immunization (TCI) with an ovalbumin-loaded self-dissolving microneedle patch (OVA-sdMN) and K3-loaded hydrophilic gel patch (HG) increased OVA-specific Th2- and Th1-type IgG subclass antibody titers more rapidly and strongly than those after only OVA-sdMN administration. However, the antigen-specific proliferation of OVA-specific CD4+ T cells was similar between the OVA-only and the OVA+K3 groups. Population analysis of various immune cells in draining lymph nodes (dLNs) in the primary immune response revealed that the OVA+K3 combination doubled the number of dLN cells, with the most significant increase in B cells. Phenotypic analysis by flow cytometry revealed that B-cell activation and maturation were promoted in the OVA+K3 group, suggesting that direct B-cell activation by K3 largely contributed to the rapid increase in antigen-specific antibody titer in TCI. In the secondary immune response, a significant increase in effector T cells and effector memory T cells, and an increase in memory B cells were observed in the OVA+K3 group compared with that in the OVA-only group. Thus, K3, as a transcutaneous adjuvant, can promote the memory differentiation of T and B cells.

14.
Cells ; 9(5)2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397414

RESUMO

Chimeric antigen receptor (CAR)-T cells have demonstrated significant clinical potential; however, their strong antitumor activity may cause severe adverse effects. To ensure efficacy and safe CAR-T cell therapy, it is important to understand CAR's structure-activity relationship. To clarify the role of hinge and transmembrane domains in CAR and CAR-T cell function, we generated different chimeras and analyzed their expression levels and antigen-specific activity on CAR-T cells. First, we created a basic CAR with hinge, transmembrane, and signal transduction domains derived from CD3ζ, then we generated six CAR variants whose hinge or hinge/transmembrane domains originated from CD4, CD8α, and CD28. CAR expression level and stability on the T cell were greatly affected by transmembrane rather than hinge domain. Antigen-specific functions of most CAR-T cells depended on their CAR expression levels. However, CARs with a CD8α- or CD28-derived hinge domain showed significant differences in CAR-T cell function, despite their equal expression levels. These results suggest that CAR signaling intensity into T cells was affected not only by CAR expression level, but also by the hinge domain. Our discoveries indicate that the hinge domain regulates the CAR signaling threshold and the transmembrane domain regulates the amount of CAR signaling via control of CAR expression level.


Assuntos
Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Feminino , Humanos , Imunoterapia Adotiva , Camundongos Endogâmicos C57BL , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Linfócitos T/imunologia
15.
IUBMB Life ; 72(8): 1649-1658, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32255257

RESUMO

Adoptive cell therapy using patients' own T-cells is expected to be an ideal cancer treatment strategy with excellent antitumor effects and low side effects. However, this therapy targeting solid tumors is unlikely to be effective because tumor tissues have an environment that suppresses T-cell function. In particular, interaction between programmed death-1 (PD-1) and its ligand (PD-L1) inhibits T-cell activation by which T-cells eliminate tumor cells. Here, we attempted to develop T-cells that can exert potent antitumor activity even in tumor tissues by genetically modifying them to express the anti-PD-L1 membrane-anchoring type single chain variable fragment (M-scFv) that can inhibit PD-L1/PD-1 interaction. Anti-PD-L1 M-scFv could be expressed on T-cells while maintaining PD-L1-binding ability. Although T-cell proliferation induced by CD3 stimulation was decreased depending on the PD-L1 stimulation intensity, M-scFv-expressing T-cells showed high proliferative activity even in the presence of PD-L1 by avoiding the PD-L1/PD-1-mediated suppression. Furthermore, M-scFv-expressing T-cells showed higher cytotoxic activity against PD-L1high tumor cells than that of mock T-cells. The effect of PD-L1/PD-1 blockade was more pronounced when the therapeutic target was low-antigenic tumor cells with low major histocompatibility complex expression, presenting only the shared antigen. These results indicated that anti-PD-L1 M-scFv expression was functional in avoiding T-cell dysfunction by PD-L1/PD-1 interaction. Our concept of anti-PD-L1 M-scFv-expressing T-cells is thus expected to improve the efficacy of T-cell therapy and contribute to simplify the treatment system and reduce treatment costs compared with the combination therapy of T-cells and antibodies.


Assuntos
Antígeno B7-H1/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Melanoma Experimental/terapia , Receptor de Morte Celular Programada 1/imunologia , Animais , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imunoterapia Adotiva , Ativação Linfocitária , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
16.
Biochem Biophys Res Commun ; 527(2): 350-357, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32216966

RESUMO

Gene-modifying T cells expressing chimeric antigen receptor (CAR) with an extracellular domain consisting of single chain variable fragment (scFv) and an intracellular domain with a T cell activation motif, are promising cancer immuno-medicines that can exert long term potent antitumor activity. However, CAR-T cells have a high risk of causing fatal side effects. Thus, more effective and safer CAR-T cells are urgently needed. Although antigen specificity and reactivity of CAR-T cells are defined by CAR expression level and affinity, information on optimizing the scFv structure that defines CAR avidity is lacking. Here, we investigated the impacts of scFv substitution and structural modification in CAR on receptor expression and antigen recognition properties. Four CARs with distinct scFvs targeting the same antigen were unexpectedly separated into a CAR expressed on T cells and bound to the antigen, CARs that did not show antigen-binding because of cell surface aggregation, and a rarely expressed CAR. Among the scFv structural modifications of CARs, changes in the Fv order and linker did not noticeably affect CAR expression or antigen-binding. In contrast, complementarity-determining region (CDR)-grafting to the stable framework region in Fv dramatically improved the surface expression level of non-producible CAR. These results revealed that CAR expression efficiency and stability on T cells are influenced by the Fv structure. Therefore, stabilization of the Fv structure by CDR-grafting may be an effective means for expressing scFvs, which have excellent antigen specificity and appropriate affinity but low structural stability, as a CAR on T cells.


Assuntos
Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Feminino , Expressão Gênica , Imunoterapia Adotiva , Camundongos Endogâmicos C57BL , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/genética , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Linfócitos T/metabolismo
17.
Oncoimmunology ; 9(1): 1734268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158627

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immunosuppressive cells that promote tumor progression by inhibiting anti-tumor immunity and may be the cause of patient resistance to immune checkpoint inhibitors (ICIs). Therefore, MDSCs are a promising target for cancer immunotherapy, especially in combination with ICIs. Previous studies have shown that the anticonvulsant drug valproic acid (VPA) has additional anti-cancer and immunoregulatory activities due to its inhibition of histone deacetylases. We have previously shown that VPA can attenuate the immunosuppressive function of differentiated MDSCs in vitro. In the present study, we utilized anti-PD-1-sensitive EL4 and anti-PD-1-resistant B16-F10 tumor-bearing mouse models and investigated the effects of VPA on MDSCs with the aim of enhancing the anti-cancer activity of an anti-PD-1 antibody. We showed that VPA could inhibit EL4 and B16-F10 tumor progression, which was dependent on the immune system. We further demonstrated that VPA down-regulated the expression of CCR2 on monocytic (M)-MDSCs, leading to the reduced infiltration of M-MDSCs into tumors. Importantly, we demonstrated that VPA could relieve the immunosuppressive action of MDSCs on CD8+ T-cell and NK cell proliferation and enhance their activation in tumors. We also observed that the combination of VPA plus an anti-PD-1 antibody was more effective than either agent alone in both the EL4 and B16-F10 tumor models. These results suggest that VPA can effectively relieve the immunosuppressive tumor microenvironment by reducing tumor infiltration of M-MDSCs, resulting in tumor regression. Our findings also show that VPA in combination with an immunotherapeutic agent could be a potential new anti-cancer therapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR2 , Microambiente Tumoral , Ácido Valproico/farmacologia
18.
Pharmaceutics ; 12(3)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183437

RESUMO

Transcutaneous immunization (TCI) is easy to use, minimally invasive, and has excellent efficacy in vaccines against infections. We focused on toll-like receptor (TLR) ligands as applicable adjuvants for transcutaneous formulations and characterized immune responses. TCI was performed using poke-and-patch methods, in which puncture holes are formed with a polyglycolic acid microneedle on the back skin of mice. Various TLR ligands were applied to the puncture holes and covered with an ovalbumin-loaded hydrophilic gel patch. During the screening process, K3 (CpG-oligonucleotide) successfully produced more antigen-specific antibodies than other TLR ligands and induced T helper (Th) 1-type polarization. Transcutaneously administered K3 was detected in draining lymph nodes and was found to promote B cell activation and differentiation, suggesting a direct transcutaneous adjuvant activity on B cells. Furthermore, a human safety test of K3-loaded self-dissolving microneedles (sdMN) was performed. Although a local skin reaction was observed at the sdMN application site, there was no systemic side reaction. In summary, we report a K3-induced Th1-type immune response that is a promising adjuvant for transcutaneous vaccine formulations using MN and show that K3-loaded sdMN can be safely applied to human skin.

19.
Int Immunol ; 32(3): 187-201, 2020 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-31755523

RESUMO

IL-10 is an immune regulatory cytokine and its genetic defect leads to gastrointestinal inflammation in humans and mice. Moreover, the IL-23/Th17 axis is known to be involved in these inflammatory disorders. IL-17A, a representative cytokine produced by Th17 cells, has an important role for the pathological process of inflammatory diseases. However, the precise function of IL-17A in inflammatory bowel disease (IBD) remains controversial. In this study, we evaluated the effect of IL-17A on colitis in IL-10-deficient (Il10-/-) mice. Mice lacking both IL-10 and IL-17A (Il10-/-Il17a-/-) suffered from fatal wasting and manifested more severe colitis compared with Il10-/-Il17a+/- mice. Moreover, we found that CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) accumulated in the bone marrow, spleen and peripheral blood of Il10-/-Il17a-/- mice. These MDSCs highly expressed inducible nitric oxide synthase (iNOS) (Nos2) and suppressed the T-cell response in vitro in a NOS-dependent manner. In correlation with these effects, the concentration of nitric oxide was elevated in the serum of Il10-/-Il17a-/- mice. Surprisingly, the severe colitis observed in Il10-/-Il17a-/- mice was ameliorated in Il10-/-Il17a-/-Nos2-/- mice. Our findings suggest that IL-17A plays suppressive roles against spontaneous colitis in Il10-/- mice in an iNOS-dependent manner and inhibits MDSC differentiation and/or proliferation.


Assuntos
Colite/imunologia , Interleucina-10/imunologia , Interleucina-17/imunologia , Células Supressoras Mieloides/imunologia , Óxido Nítrico/biossíntese , Animais , Peso Corporal , Inflamação/imunologia , Interleucina-10/deficiência , Interleucina-17/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/análise , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/imunologia
20.
Biol Pharm Bull ; 41(12): 1866-1869, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504687

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immunosuppressive myeloid cells found in patients with cancer and in mouse tumor models. They suppress anti-tumor immunity, resulting in the promotion of tumor growth. The relationship between nutrition and cancer has recently been reported by several research groups. Tumor cells rely on glutaminolysis, in which glutamine is metabolized into glutamate for energy production, and hence, glutamate levels are elevated in tumor-bearing hosts. However, the mechanism of regulation of tumor progression by glutamate still remains unclear. In this study, we found that the metabotropic glutamate receptor (mGluR) 2/3 was expressed on MDSCs, and an mGluR2/3 antagonist LY341495 attenuated the immunosuppressive activity of MDSCs. Furthermore, we observed that LY341495 treatment inhibited B16-F10 melanoma growth in vivo. Taken together, our data suggest that glutamate signaling promotes tumor growth by increasing the potency of immune suppression.


Assuntos
Aminoácidos/farmacologia , Melanoma Experimental/tratamento farmacológico , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Xantenos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA