Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(5): 986-998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443606

RESUMO

Horizontal gene transfer, the exchange of genetic material through means other than reproduction, is a fundamental force in prokaryotic genome evolution. Genomic persistence of horizontally transferred genes has been shown to be influenced by both ecological and evolutionary factors. However, there is limited availability of ecological information about species other than the habitats from which they were isolated, which has prevented a deeper exploration of ecological contributions to horizontal gene transfer. Here we focus on transfers detected through comparison of individual gene trees to the species tree, assessing the distribution of gene-exchanging prokaryotes across over a million environmental sequencing samples. By analysing detected horizontal gene transfer events, we show distinct functional profiles for recent versus old events. Although most genes transferred are part of the accessory genome, genes transferred earlier in evolution tend to be more ubiquitous within present-day species. We find that co-occurring, interacting and high-abundance species tend to exchange more genes. Finally, we show that host-associated specialist species are most likely to exchange genes with other host-associated specialist species, whereas species found across different habitats have similar gene exchange rates irrespective of their preferred habitat. Our study covers an unprecedented scale of integrated horizontal gene transfer and environmental information, highlighting broad eco-evolutionary trends.


Assuntos
Bactérias , Transferência Genética Horizontal , Bactérias/genética , Genoma Bacteriano , Ecossistema , Archaea/genética , Genoma Arqueal , Evolução Molecular
2.
Microbiol Mol Biol Rev ; 87(4): e0006323, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37947420

RESUMO

SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.


Assuntos
Microbiota , Humanos , Microbiota/genética , Disbiose
3.
mSystems ; 7(2): e0016022, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35353008

RESUMO

Microbiomes are typically characterized by high species diversity but it is poorly understood how such system-level complexity can be generated and propagated. Here, we used soil microcosms as a model to study development of bacterial communities as a function of their starting complexity and environmental boundary conditions. Despite inherent stochastic variation in manipulating species-rich communities, both laboratory-mixed medium complexity (21 soil bacterial isolates in equal proportions) and high-diversity natural top-soil communities followed highly reproducible succession paths, maintaining 16S rRNA gene amplicon signatures prominent for known soil communities in general. Development trajectories and compositional states were different for communities propagated in soil microcosms than in liquid suspension. Compositional states were maintained over multiple renewed growth cycles but could be diverged by short-term pollutant exposure. The different but robust trajectories demonstrated that deterministic taxa-inherent characteristics underlie reproducible development and self-organized complexity of soil microbiomes within their environmental boundary conditions. Our findings also have direct implications for potential strategies to achieve controlled restoration of desertified land. IMPORTANCE There is now a great awareness of the high diversity of most environmental ("free-living") and host-associated microbiomes, but exactly how diverse microbial communities form and maintain is still highly debated. A variety of theories have been put forward, but testing them has been problematic because most studies have been based on synthetic communities that fail to accurately mimic the natural composition (i.e., the species used are typically not found together in the same environment), the diversity (usually too low to be representative), or the environmental system itself (using designs with single carbon sources or solely mixed liquid cultures). In this study, we show how species-diverse soil bacterial communities can reproducibly be generated, propagated, and maintained, either from individual isolates (21 soil bacterial strains) or from natural microbial mixtures washed from top-soil. The high replicate consistency we achieve both in terms of species compositions and developmental trajectories demonstrates the strong inherent deterministic factors driving community formation from their species composition. Generating complex soil microbiomes may provide ways for restoration of damaged soils that are prevalent on our planet.


Assuntos
Microbiota , Solo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Bactérias
4.
Microb Ecol ; 80(2): 459-474, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32328670

RESUMO

Wild Japanese macaques (Macaca fuscata Blyth) living in the highland and lowland areas of Yakushima are known to have different diets, with highland individuals consuming more leaves. We aim to clarify whether and how these differences in diet are also reflected by gut microbial composition and fermentation ability. Therefore, we conduct an in vitro fermentation assay using fresh feces from macaques as inoculum and dry leaf powder of Eurya japonica Thunb. as a substrate. Fermentation activity was higher for feces collected in the highland, as evidenced by higher gas and butyric acid production and lower pH. Genetic analysis indicated separation of highland and lowland in terms of both community structure and function of the gut microbiota. Comparison of feces and suspension after fermentation indicated that the community structure changed during fermentation, and the change was larger for lowland samples. Analysis of the 16S rRNA V3-V4 barcoding region of the gut microbiota showed that community structure was clearly clustered between the two areas. Furthermore, metagenomic analysis indicated separation by gene and pathway abundance patterns. Two pathways (glycogen biosynthesis I and D-galacturonate degradation I) were enriched in lowland samples, possibly related to the fruit-eating lifestyle in the lowland. Overall, we demonstrated that the more leaf-eating highland Japanese macaques harbor gut microbiota with higher leaf fermentation ability compared with the more fruit-eating lowland ones. Broad, non-specific taxonomic and functional gut microbiome differences suggest that this pattern may be driven by a complex interplay between many taxa and pathways rather than single functional traits.


Assuntos
Bactérias/metabolismo , Digestão , Comportamento Alimentar , Microbioma Gastrointestinal/fisiologia , Macaca fuscata/microbiologia , Macaca fuscata/fisiologia , Animais , Bactérias/genética , Dieta , Fermentação , Metagenoma , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
5.
Cell Syst ; 9(3): 286-296.e8, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31542415

RESUMO

The availability of large-scale metagenomic sequencing data can facilitate the understanding of microbial ecosystems in unprecedented detail. However, current computational methods for predicting ecological interactions are hampered by insufficient statistical resolution and limited computational scalability. They also do not integrate metadata, which can reduce the interpretability of predicted ecological patterns. Here, we present FlashWeave, a computational approach based on a flexible Probabilistic Graphical Model framework that integrates metadata and predicts direct microbial interactions from heterogeneous microbial abundance data sets with hundreds of thousands of samples. FlashWeave outperforms state-of-the-art methods on diverse benchmarking challenges in terms of runtime and accuracy. We use FlashWeave to analyze a cross-study data set of 69,818 publicly available human gut samples and produce, to the best of our knowledge, the largest and most diverse network of predicted, direct gastrointestinal microbial interactions to date. FlashWeave is freely available for download here: https://github.com/meringlab/FlashWeave.jl.


Assuntos
Biologia Computacional/métodos , Interações Microbianas , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Algoritmos , Biodiversidade , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma , Metagenômica , Modelos Estatísticos
6.
Microbiome ; 6(1): 192, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355348

RESUMO

BACKGROUND: The identification of body site-specific microbial biomarkers and their use for classification tasks have promising applications in medicine, microbial ecology, and forensics. Previous studies have characterized site-specific microbiota and shown that sample origin can be accurately predicted by microbial content. However, these studies were usually restricted to single datasets with consistent experimental methods and conditions, as well as comparatively small sample numbers. The effects of study-specific biases and statistical power on classification performance and biomarker identification thus remain poorly understood. Furthermore, reliable detection in mixtures of different body sites or with noise from environmental contamination has rarely been investigated thus far. Finally, the impact of ecological associations between microbes on biomarker discovery was usually not considered in previous work. RESULTS: Here we present the analysis of one of the largest cross-study sequencing datasets of microbial communities from human body sites (15,082 samples from 57 publicly available studies). We show that training a Random Forest Classifier on this aggregated dataset increases prediction performance for body sites by 35% compared to a single-study classifier. Using simulated datasets, we further demonstrate that the source of different microbial contributions in mixtures of different body sites or with soil can be detected starting at 1% of the total microbial community. We apply a biomarker selection method that excludes indirect environmental associations driven by microbe-microbe associations, yielding a parsimonious set of highly predictive taxa including novel biomarkers and excluding many previously reported taxa. We find a considerable fraction of unclassified biomarkers ("microbial dark matter") and observe that negatively associated taxa have a surprisingly high impact on classification performance. We further detect a significant enrichment of rod-shaped, motile, and sporulating taxa for feces biomarkers, consistent with a highly competitive environment. CONCLUSIONS: Our machine learning model shows strong body site classification performance, both in single-source samples and mixtures, making it promising for tasks requiring high accuracy, such as forensic applications. We report a core set of ecologically informed biomarkers, inferred across a wide range of experimental protocols and conditions, providing the most concise, general, and least biased overview of body site-associated microbes to date.


Assuntos
Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Genoma Bacteriano/genética , Microbiota/genética , Biomarcadores/análise , Corpo Humano , Humanos , Aprendizado de Máquina
7.
Bioinformatics ; 33(23): 3808-3810, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961926

RESUMO

MOTIVATION: Ribosomal RNA profiling has become crucial to studying microbial communities, but meaningful taxonomic analysis and inter-comparison of such data are still hampered by technical limitations, between-study design variability and inconsistencies between taxonomies used. RESULTS: Here we present MAPseq, a framework for reference-based rRNA sequence analysis that is up to 30% more accurate (F½ score) and up to one hundred times faster than existing solutions, providing in a single run multiple taxonomy classifications and hierarchical operational taxonomic unit mappings, for rRNA sequences in both amplicon and shotgun sequencing strategies, and for datasets of virtually any size. AVAILABILITY AND IMPLEMENTATION: Source code and binaries are freely available at https://github.com/jfmrod/mapseq. CONTACT: mering@imls.uzh.ch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genes Microbianos , RNA Ribossômico/genética , Análise de Sequência de DNA/métodos , Software , Algoritmos , Bactérias/genética , Eucariotos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA