Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(12): 8214-8221, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38469197

RESUMO

The concerted use of nano-metal particles with catalytic functions and nanoporous materials holds promise for effective air purification and gas sensing; however, only a few studies have used porous glasses as supports for Au nanoparticles. Furthermore, Au/nanoporous glasses with activities comparable to that of Au/TiO2, which is a typical Au catalyst, have not been reported to date. This study demonstrates that a nanoporous glass, which is highly acid- and alkali-resistant and chemically stable, can be decorated with Au nanoparticles using an alkali impregnation method. The resulting composite exhibits high catalytic activity in CO oxidation. The catalysts reported herein are as active as Au/TiO2 catalysts per active site. Further optimisation of the pore properties of the glass and sizes of the Au nanoparticles is expected to result in excellent catalytic systems for CO removal and sensing.

2.
J Phys Chem Lett ; 15(6): 1677-1685, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315662

RESUMO

The utility of alcohol as a hydrogen bonding donor is considered a providential avenue for moderating the high basicity and reactivity of the fluoride ion, typically used with large cations. However, the practicality of alcohol-fluoride systems in reactions is hampered by the limited understanding of the pertinent interactions between the OH group and F-. Therefore, this study comparatively investigates the thermal, structural, and physical properties of the CsF-2-propanol and CsF-1,1,1,3,3,3-hexafluoro-2-propanol systems to explicate the effects of the fluoroalkyl group on the interaction of alcohols and F-. The two systems exhibit vastly different phase diagrams despite the similar saturated concentrations. A combination of spectroscopic analyses, alcohol activity coefficient measurements, and theoretical calculations reveal the fluorinated alcohol system harbors the stronger OH···F- interactions between the two systems. The diffusion coefficient and ionic conductivity measurements attribute the present results to disparate states of ion association in the two systems.

3.
Chemistry ; 30(13): e202303573, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179895

RESUMO

Despite its unique physicochemical properties, the catalytic application of nickel carbide (Ni3 C) in organic synthesis is rare. In this study, we report well-defined nanocrystalline Ni3 C (nano-Ni3 C) as a highly active catalyst for the selective hydrogenation of nitriles to primary amines. The activity of the aluminum-oxide-supported nano-Ni3 C (nano-Ni3 C/Al2 O3 ) catalyst surpasses that of Ni nanoparticles. Various aromatic and aliphatic nitriles and dinitriles were successfully converted to the corresponding primary amines under mild conditions (1 bar H2 pressure). Furthermore, the nano-Ni3 C/Al2 O3 catalyst was reusable and applicable to gram-scale experiments. Density functional theory calculations suggest the formation of polar hydrogen species on the nano-Ni3 C surface, which were attributed to the high activity of nano-Ni3 C towards nitrile hydrogenation. This study demonstrates the utility of metal carbides as a new class of catalysts for liquid-phase organic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA