Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(12): 1416-1422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37591936

RESUMO

Two-dimensional flat-band systems have recently attracted considerable interest due to the rich physics unveiled by emergent phenomena and correlated electronic states at van Hove singularities. However, the difficulties in electrically detecting the flat-band position in field-effect structures are slowing down the investigation of their properties. In this work, we use indium selenide (InSe) as a flat-band system due to a van Hove singularity at the valence-band edge in a few-layer form of the material without the requirement of a twist angle. We investigate tunnelling photocurrents in gated few-layer InSe structures and relate them to ambipolar transport and photoluminescence measurements. We observe an appearance of a sharp change in tunnelling mechanisms due to the presence of the van Hove singularity at the flat band. We further corroborate our findings by studying tunnelling currents as a reliable probe for the flat-band position up to room temperature. Our results create an alternative approach to studying flat-band systems in heterostructures of two-dimensional materials.

2.
Nat Photonics ; 17(7): 615-621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426431

RESUMO

Interactions between out-of-plane dipoles in bosonic gases enable the long-range propagation of excitons. The lack of direct control over collective dipolar properties has so far limited the degrees of tunability and the microscopic understanding of exciton transport. In this work we modulate the layer hybridization and interplay between many-body interactions of excitons in a van der Waals heterostructure with an applied vertical electric field. By performing spatiotemporally resolved measurements supported by microscopic theory, we uncover the dipole-dependent properties and transport of excitons with different degrees of hybridization. Moreover, we find constant emission quantum yields of the transporting species as a function of excitation power with radiative decay mechanisms dominating over nonradiative ones, a fundamental requirement for efficient excitonic devices. Our findings provide a complete picture of the many-body effects in the transport of dilute exciton gases, and have crucial implications for studying emerging states of matter such as Bose-Einstein condensation and optoelectronic applications based on exciton propagation.

3.
Nanoscale ; 15(26): 11064-11071, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37309577

RESUMO

Transition-metal dichalcogenide bilayers exhibit a rich exciton landscape including layer-hybridized excitons, i.e. excitons which are of partly intra- and interlayer nature. In this work, we study hybrid exciton-exciton interactions in naturally stacked WSe2 homobilayers. In these materials, the exciton landscape is electrically tunable such that the low-energy states can be rendered more or less interlayer-like depending on the strength of the external electric field. Based on a microscopic and material-specific many-particle theory, we reveal two intriguing interaction regimes: a low-dipole regime at small electric fields and a high-dipole regime at larger fields, involving interactions between hybrid excitons with a substantially different intra- and interlayer composition in the two regimes. While the low-dipole regime is characterized by weak inter-excitonic interactions between intralayer-like excitons, the high-dipole regime involves mostly interlayer-like excitons which display a strong dipole-dipole repulsion and give rise to large spectral blue-shifts and a highly anomalous diffusion. Overall, our microscopic study sheds light on the remarkable electrical tunability of hybrid exciton-exciton interactions in atomically thin semiconductors and can guide future experimental studies in this growing field of research.

4.
Nano Lett ; 22(22): 8883-8891, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346874

RESUMO

Interactions among a collection of particles generate many-body effects in solids that result in striking modifications of material properties. The heavy carrier mass that yields strong interactions and gate control of carrier density over a wide range makes two-dimensional semiconductors an exciting playground to explore many-body physics. The family of III-VI metal monochalcogenides emerges as a new platform for this purpose because of its excellent optical properties and the flat valence band dispersion. In this work, we present a complete study of charge-tunable excitons in few-layer InSe by photoluminescence spectroscopy. From the optical spectra, we establish that free excitons in InSe are more likely to be captured by ionized donors leading to the formation of bound exciton complexes. Surprisingly, a pronounced red shift of the exciton energy accompanied by a decrease of the exciton binding energy upon hole-doping reveals a significant band gap renormalization induced by the presence of the Fermi reservoir.

5.
Nat Commun ; 13(1): 4884, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35985999

RESUMO

Devices based on two-dimensional (2D) semiconductors hold promise for the realization of compact and versatile on-chip interconnects between electrical and optical signals. Although light emitting diodes (LEDs) are fundamental building blocks for integrated photonics, the fabrication of light sources made of bulk materials on complementary metal-oxide-semiconductor (CMOS) circuits is challenging. While LEDs based on van der Waals heterostructures have been realized, the control of the emission properties necessary for information processing remains limited. Here, we show room-temperature electrical control of the location, directionality and polarization of light emitted from a 2D LED operating at MHz frequencies. We integrate the LED in a planar cavity to couple the polariton emission angle and polarization to the in-plane exciton momentum, controlled by a lateral voltage. These findings demonstrate the potential of TMDCs as fast, compact and tunable light sources, promising for the realization of electrically driven polariton lasers.

6.
Nat Photonics ; 16(1): 79-85, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34992677

RESUMO

Dipolar bosonic gases are currently the focus of intensive research due to their interesting many-body physics in the quantum regime. Their experimental embodiments range from Rydberg atoms to GaAs double quantum wells and van der Waals heterostructures built from transition metal dichalcogenides. Although quantum gases are very dilute, mutual interactions between particles could lead to exotic many-body phenomena such as Bose-Einstein condensation and high-temperature superfluidity. Here, we report the effect of repulsive dipolar interactions on the dynamics of interlayer excitons in the dilute regime. By using spatial and time-resolved photoluminescence imaging, we observe the dynamics of exciton transport, enabling a direct estimation of the exciton mobility. The presence of interactions significantly modifies the diffusive transport of excitons, effectively acting as a source of drift force and enhancing the diffusion coefficient by one order of magnitude. The repulsive dipolar interactions combined with the electrical control of interlayer excitons opens up appealing new perspectives for excitonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA