RESUMO
Five host-defense peptides (figainin 2PL, hylin PL, raniseptin PL, plasticin PL, and peptide YL) were isolated from norepinephrine-stimulated skin secretions of the banana tree dwelling frog Boana platanera (Hylidae; Hylinae) collected in Trinidad. Raniseptin PL (GVFDTVKKIGKAVGKFALGVAKNYLNS.NH2) and figainin 2PL (FLGTVLKLGKAIAKTVVPMLTNAMQPKQ. NH2) showed potent and rapid bactericidal activity against a range of clinically relevant Gram-positive and Gram-negative ESKAPE + pathogens and Clostridioides difficile. The peptides also showed potent cytotoxic activity (LC50 values < 30 µM) against A549, MDA-MB-231 and HT29 human tumor-derived cell lines but appreciably lower hemolytic activity against mouse erythrocytes (LC50 = 262 ± 14 µM for raniseptin PL and 157 ± 16 µM for figainin 2PL). Hylin PL (FLGLIPALAGAIGNLIK.NH2) showed relatively weak activity against microorganisms but was more hemolytic. The glycine-leucine-rich peptide with structural similarity to the plasticins (GLLSTVGGLVGGLLNNLGL.NH2) and the non-cytotoxic peptide YL (YVPGVIESLL.NH2) lacked antimicrobial and cytotoxic activities. Hylin PL, raniseptinPL and peptide YL stimulated the rate of release of insulin from BRIN-BD11 clonal ß-cells at concentrations ≥100 nM. Peptide YL was the most effective (2.3-fold increase compared with basal rate at 1 µM concentration) and may represent a template for the design of a new class of incretin-based anti-diabetic drugs.
Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Antineoplásicos , Anuros , Hemolíticos , Incretinas , Pele , Anuros/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Musa , Pele/química , Pele/metabolismo , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Humanos , Células HT29 , Clostridioides difficile/efeitos dos fármacos , Camundongos , Hemolíticos/isolamento & purificação , Hemolíticos/farmacologia , Eritrócitos/efeitos dos fármacos , Incretinas/isolamento & purificação , Incretinas/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologiaRESUMO
Envenomation by the Trinidad thick-tailed scorpion Tityus trinitatis may result in fatal myocarditis and there is a high incidence of acute pancreatitis among survivors. Peptidomic analysis (reversed-phase HPLC followed by MALDI-TOF mass spectrometry and automated Edman degradation) of T. trinitatis venom led to the isolation and characterization of three peptides with antimicrobial activity. Their primary structures were established asTtAP-1 (FLGSLFSIGSKLLPGVFKLFSRKKQ.NH2), TtAP-2 (IFGMIPGLIGGLISAFK.NH2) and TtAP-3 (FFSLIPSLIGGLVSAIK.NH2). In addition, potassium channel and sodium channel toxins, present in the venom in high abundance, were identified by CID-MS/MS sequence analysis. TtAP-1 was the most potent against a range of clinically relevant Gram-positive and Gram-negative aerobes and against the anaerobe Clostridioides difficile (MIC = 3.1-12.5 µg/mL). At a concentration of 1× MIC, TtAP-1 produced rapid cell death (<15 min against Acinetobacter baumannii and Staphylococcus aureus). The therapeutic potential of TtAP-1 as an anti-infective agent is limited by its high hemolytic activity (LC50 = 18 µg/mL against mouse erythrocytes) but the peptide constitutes a template for the design of analogs that maintain the high bactericidal activity against ESKAPE pathogens but are less toxic to human cells. It is suggested that the antimicrobial peptides in the scorpion venom facilitate the action of the neurotoxins by increasing the membrane permeability of cells from either prey or predator.
RESUMO
Almost 80% of chronic wounds have a bacterial biofilm present. These wound biofilms are caused by a range of organisms and are often polymicrobial. Pseudomonas aeruginosa is one of the most common causative organisms in wound infections and readily forms biofilms in wounds. To coordinate this, P. aeruginosa uses a process known as quorum sensing. Structural homologues of the quorum sensing signalling molecules have been used to disrupt this communication and prevent biofilm formation by Pseudomonas. However, these compounds have not yet reached clinical use. Here, we report the production and characterisation of a lyophilised PVA aerogel for use in delivering furanones to wound biofilms. PVA aerogels successfully release a model antimicrobial and two naturally occurring furanones in an aqueous environment. Furanone loaded aerogels inhibited biofilm formation in P. aeruginosa by up to 98.80%. Further, furanone loaded aerogels successfully reduced total biomass of preformed biofilms. Treatment with a sotolon loaded aerogel yielded a 5.16 log reduction in viable biofilm bound cells in a novel model of chronic wound biofilm, equivalent to the current wound therapy Aquacel AG. These results highlight the potential utility of aerogels in drug delivery to infected wounds and supports the use of biofilm inhibitory compounds as wound therapeutics.
RESUMO
Clostridiodes difficile (C. difficile) was ranked an "urgent threat" by the Centers for Disease Control and Prevention (CDC) in 2019. C. difficile infection (CDI) is the most common healthcare-associated infection (HAI) in the United States of America as well as the leading cause of antibiotic-associated gastrointestinal disease. C. difficile is a gram-positive, rod-shaped, spore-forming, anaerobic bacterium that causes infection of the epithelial lining of the gut. CDI occurs most commonly after disruption of the human gut microflora following the prolonged use of broad-spectrum antibiotics. However, the recurrent nature of this disease has led to the hypothesis that biofilm formation may play a role in its pathogenesis. Biofilms are sessile communities of bacteria protected from extracellular stresses by a matrix of self-produced proteins, polysaccharides, and extracellular DNA. Biofilm regulation in C. difficile is still incompletely understood, and its role in disease recurrence has yet to be fully elucidated. However, many factors have been found to influence biofilm formation in C. difficile, including motility, adhesion, and hydrophobicity of the bacterial cells. Small changes in one of these systems can greatly influence biofilm formation. Therefore, the biofilm regulatory system would need to coordinate all these systems to create optimal biofilm-forming physiology under appropriate environmental conditions. The coordination of these systems is complex and multifactorial, and any analysis must take into consideration the influences of the stress response, quorum sensing (QS), and gene regulation by second messenger molecule cyclic diguanosine monophosphate (c-di-GMP). However, the differences in biofilm-forming ability between C. difficile strains such as 630 and the "hypervirulent" strain, R20291, make it difficult to assign a "one size fits all" mechanism to biofilm regulation in C. difficile. This review seeks to consolidate published data regarding the regulation of C. difficile biofilms in order to identify gaps in knowledge and propose directions for future study.