Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Divers ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316325

RESUMO

Pyroptosis, as a lytic-inflammatory type of programmed cell death, has garnered considerable attention due to its role in cancer chemotherapy and many inflammatory diseases. This review will discuss the biochemical classification of pyroptotic inducers according to their chemical structure, pyroptotic mechanism, and cancer type of these targets. A structure-activity relationship study on pyroptotic inducers is revealed based on the surveyed pyroptotic inducer chemotherapeutics. The shared features in the chemical structures of current pyroptotic inducer agents were displayed, including an essential cyclic head, a vital linker, and a hydrophilic tail that is significant for π-π interactions and hydrogen bonding. The presented structural features will open the way to design new hybridized classes or scaffolds as potent pyroptotic inducers in the future, which may represent a solution to the apoptotic-resistance dilemma along with synergistic chemotherapeutic advantage.

2.
Heliyon ; 10(17): e36314, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286167

RESUMO

Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.

3.
RSC Med Chem ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39246752

RESUMO

Cancer patients undergoing chemotherapy are highly susceptible to infections owing to their compromised immune system, which also promotes cancer progression through inflammation. Thus, this study aimed to develop novel chemotherapeutic agents with both anticancer and antimicrobial properties. A series of diarylurea derivatives based on pyridazinone scaffolds were designed, synthesized, and characterized as surrogates for sorafenib. The synthesized compounds were tested for their antimicrobial activity and screened against 60 cancer cell lines at the National Cancer Institute (NCI). Compound 10h exhibited potent antibacterial activity against Staphylococcus aureus (MIC = 16 µg mL-1), whereas compound 8g showed significant antifungal activity against Candida albicans (MIC = 16 µg mL-1). Additionally, ten compounds were further evaluated for VEGFR-2 inhibition, with compound 17a showing the best inhibitory activity. Compounds 8f, 10l, and 17a demonstrated significant anticancer activity against melanoma, NSCLC, prostate cancer, and colon cancer, with growth inhibition percentages (GI%) ranging from 62.21% to 100.14%. Compounds 10l and 17a were selected for five-dose screening, displaying GI50 values of 1.66-100 µM. Compound 10l induced G0-G1 phase cell cycle arrest in the A549/ATCC cell line, increasing the cell population from 85.41% to 90.86%. Gene expression analysis showed that compound 10l upregulated pro-apoptotic genes p53 and Bax and downregulated the anti-apoptotic gene Bcl-2. Molecular docking studies provided insights into the binding modes of the compounds to the VEGFR-2 enzyme. In conclusion, the pyridazinone-based diarylurea derivatives developed in this study show promise as dual-function antimicrobial and anticancer agents, warranting further investigation.

4.
Front Pharmacol ; 15: 1379908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211776

RESUMO

The major contribution of myocardial damage to global mortalities raises debate regarding the exploration of new therapeutic strategies for its treatment. Therefore, our study investigated the counteracting effect of tiron against isoprenaline (ISO)-mediated cardiac infarction in mice. Tiron was administered to mice for 7 days prior to two consecutive injections of ISO on days 8 and 9 of the treatment protocol. Tiron significantly reduced the levels of CK-MB, LDH, and AST in serum samples of ISO-challenged mice. A considerable increase in the cardiac antioxidant response was observed in tiron-treated mice, as indicated by depletion of MDA and enhancement of antioxidant activities. Furthermore, tiron induced a marked decrease in NLRP3, ASC, and caspase-1 levels accompanied by weak immune reactions of IL-1ß, NF-κB, TLR4, and iNOS in the infarct cardiac tissues. Histopathological screening validated these variations observed in the cardiac specimens. Thus, tiron clearly mitigated the oxidative and inflammatory stress by repressing the NLRP3 inflammasome and the TLR4/NF-κB/iNOS signaling cascade.

5.
Front Pharmacol ; 15: 1412245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092234

RESUMO

Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only. After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.

6.
Front Pharmacol ; 15: 1394557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170697

RESUMO

Introduction: Isoproterenol (ISO) is regarded as an adrenergic non-selective ß agonist. It regulates myocardial contractility and may cause damage to cardiac tissues. Alchemilla vulgaris (AV) is an herbal plant that has garnered considerable attention due to its anti-inflammatory and antioxidant bioactive components. The present investigation assessed the cardioprotective potential of AV towards ISO-induced myocardial damage. Methods: Four groups of mice were utilized: control that received saline, an ISO group (85 mg/kg, S.C.), ISO + AV100, and ISO + AV200 groups (mice received 100 or 200 mg/kg AV orally along with ISO). Results and discussion: ISO induced notable cardiac damage demonstrated by clear histopathological disruption and alterations in biochemical parameters. Intriguingly, AV treatment mitigates ISO provoked oxidative stress elucidated by a substantial enhancement in superoxide dismutase (SOD) and catalase (CAT) activities and reduced glutathione (GSH) content, as well as a considerable reduction in malondialdehyde (MDA) concentrations. In addition, notable downregulation of inflammatory biomarkers (IL-1ß, TNF-α, and RAGE) and the NF-κB/p65 pathway was observed in ISO-exposed animals following AV treatment. Furthermore, the pro-apoptotic marker Bax was downregulated together with autophagy markers Beclin1 and LC3 with in ISO-exposed animals when treated with AV. Pre-treatment with AV significantly alleviated ISO-induced cardiac damage in a dose related manner, possibly due to their antioxidant and anti-inflammatory properties. Interestingly, when AV was given at higher doses, a remarkable restoration of ISO-induced cardiac injury was revealed.

7.
FASEB J ; 38(14): e23816, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39072779

RESUMO

Acetaminophen (APAP) is one of the most clinically relevant medications associated with acute liver damage. A prolific deal of research validated the hepatoprotective effect of empagliflozin (EMPA); however, its effect on APAP-induced hepatotoxicity has still not been investigated. In this study, the prospective hepatoprotective impact of EMPA against APAP-induced hepatotoxicity was investigated. Twenty-eight Balb-C mice were assigned to four groups: control, APAP, EMPA10/APAP, and EMPA25/APAP. At the end of the experiment, serum hepatotoxicity biomarkers, MDA level, and GSH content were estimated. Hepatic mitofusin-2 (MFN2), optic atrophy 1 (OPA1), dynamin-related protein 1 (Drp1), and mitochondrial fission 1 protein (FIS1) were immunoassayed. PGC-1α, cGAS, and STING mRNA expression were assessed by real-time PCR. Histopathological changes and immunohistochemistry of INF-ß, p-NF-κB, and iNOS were evaluated. APAP treatment caused significant hepatic functional impairment and increased hepatic MDA levels, as well as a concomitant decrease in GSH content. Marked elevation in Drp1 and FIS1 levels, INF-ß, p-NF-κB, and iNOS immunoreactivity, and reduction in MFN2 and OPA1 levels in the APAP-injected group, PGC-1α downregulation, and high expression of cGAS and STING were also documented. EMPA effectively ameliorated APAP-generated structural and functional changes in the liver, restored redox homeostasis and mitochondrial dynamics balance, and enhanced mitochondrial biogenesis, remarkably diminished hepatic expression of cGAS and STING, and elicited a reduction in hepatic inflammation. Moreover, the computational modeling data support the interaction of APAP with antioxidant system-related proteins as well as the interactions of EMPA against Drp1, cGAS, IKKA, and iNOS proteins. Our findings demonstrated for the first time that EMPA has an ameliorative impact against APAP-induced hepatotoxicity in mice via modulation of mitochondrial dynamics, biogenesis, and cGAS/STING-dependent inflammation. Thus, this study concluded that EMPA could be a promising therapeutic modality for acute liver toxicity.


Assuntos
Acetaminofen , Compostos Benzidrílicos , Doença Hepática Induzida por Substâncias e Drogas , Dinaminas , GTP Fosfo-Hidrolases , Glucosídeos , Proteínas de Membrana , Dinâmica Mitocondrial , Nucleotidiltransferases , Animais , Masculino , Camundongos , Acetaminofen/toxicidade , Acetaminofen/efeitos adversos , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Dinaminas/metabolismo , Dinaminas/genética , Glucosídeos/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
ACS Omega ; 9(22): 23949-23962, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854532

RESUMO

Arthrospira platensis has been the subject of plentiful studies due to its purported health advantages; nevertheless, additional investigation is required to determine whether several chronic diseases may be treated or avoided with its nanoform. Therefore, we set out to examine A. platensis nanoparticles (SNPs) to protect against kidney impairment caused by Streptozotocin (STZ) in diabetic rats, precisely focusing on its effect and the cellular intracellular pathways involved. Male Wistar rats were assigned into four groups: Group 1 was set as control, comprising the normal rats; group 2 was administered SNPs (0.5 mg/kg BW, once/day) orally for 84 consecutive days; group 3, STZ-diabetic rats were injected with STZ (65 mg/kg BW); and group 4, in which the diabetic rats were treated with SNPs. After inducing diabetes in rats for 84 days, the animals were euthanized. The results disclosed that SNP treatment substantially (P < 0.05) improved the glucose and glycated hemoglobin levels (HbA1c %), insulin, C-peptide, and cystatin C deterioration in diabetic rats. Furthermore, SNP administration significantly lowered (P < 0.05) nitric oxide (NO) and malondialdehyde (MDA) levels in renal tissue and enhanced kidney function metrics, as well as improved the antioxidant capacity of the renal tissue. In addition, oral SNPs overcame the diabetic complications concerning diabetic nephropathy, indicated by downregulation and upregulation of apoptotic and antiapoptotic genes, respectively, along with prominent modulation of the antiangiogenic marker countenance level, improving kidney function. SNP modulated the nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 (NRF2/HO-1) pathways and inhibited the nuclear factor-κB (NF-κB) expression, strengthening the SNP pathways in alleviating diabetic nephropathy. The histopathology results corroborated the obtained biochemical and molecular observations, suggesting the therapeutic potential of SNPs in diabetic nephropathy via mechanisms other than its significant antioxidant and hypoglycemic effects, including modulation of antiangiogenic and inflammatory mediators and the NRF2/HO-1 pathways.

9.
Front Microbiol ; 15: 1381302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832112

RESUMO

Biosynthetic metals have attracted global attention because of their safety, affordability, and environmental friendliness. As a consequence, the cell-free filtrate (CFF) of Dill leaf-derived endophytic fungus Aspergillus luchuensis was employed for the extracellularly synthesis silver nanoparticles (AgNPs). A reddish-brown color shift confirmed that AgNPs were successfully produced. The obtained AgNPs were characterized by UV-Vis (ultraviolet-visible spectroscopy), Transmission electron microscopy (TEM), FTIR, EDX, and zeta potential. Results demonstrated the creation of crystalline AgNPs with a spherical shape at 427.81 nm in the UV-Vis spectrum, and size ranged from 16 to 18 nm as observed by TEM. Additionally, the biogenic AgNPs had a promising antibacterial activity versus multidrug-resistant bacteria, notably, S. aureus, E. coli, and S. typhi. The highest growth reduction was recorded in the case of E. coli. Furthermore, the biosynthesized AgNPs demonstrated potent antifungal potential versus a variety of harmful fungi. The maximum growth inhibition was evaluated from A. brasinsilles, followed by C. albicans as compared to cell-free extract and AgNO3. In addition, data revealed that AgNPs possess powerful antioxidant activity, and their ability to scavenge radicals increased from 33.0 to 85.1% with an increment in their concentration from 3.9 to 1,000 µg/mL. Furthermore, data showed that AgNPs displayed high catalytic activity of safranin under light irradiation. The maximum decolorization percentage (100%) was observed after 6 h. Besides, the biosynthesized AgNPs showed high insecticidal potential against 3rd larval instar of Culex pipiens. Taken together, data suggested that endophytic fungus, A. luchuensis, is an attractive candidate as an environmentally sustainable and friendly fungal nanofactory.

10.
Front Bioeng Biotechnol ; 12: 1384326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863491

RESUMO

Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.

11.
BMC Vet Res ; 20(1): 250, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849855

RESUMO

BACKGROUND: Buffalo spermatozoa have a distinct membrane structure that makes them more vulnerable to cryopreservation, resulting in lower-quality post-thawed sperm. This decreases the success rate of artificial insemination in buffaloes. Understanding and addressing these specific vulnerabilities are essential for improving reproductive techniques in buffalo populations. The properties of cryopreserved buffalo bull semen were examined in this study regarding the impact of adding autologous platelet-rich plasma (PRP) to OptiXcell® or Tris egg yolk-based extenders. Ten buffalo bulls were used to collect semen. Each bull's ejaculate was separated into two main equal amounts, each of which was then diluted with either OptiXcell® or Tris egg yolk-based extender, supplemented with various PRP concentrations (5%, 10%, and 15%), and the control (0%), before being cryopreserved according to established protocols. Following equilibration and thawing, the quality and functionality of the sperm were evaluated, along with the antioxidant enzyme activities (GSH and TAC), malondialdehyde (MDA) content, and in vivo fertilization rate of the thawed semen. RESULTS: All PRP concentrations in both extenders, particularly 10% PRP, improved the quality and functionality of the sperm in both equilibrated and frozen-thawed semen. Additionally, the antioxidant enzyme activities in both extenders were higher in the PRP-supplemented groups compared to the control group in thawed semen (P < 0.05). All post-thaw sperm quality, antioxidant enzyme activities, and functionality aside from DNA integrity were higher (P < 0.05) in the PRP-supplemented OptiXcell® than in the PRP-supplemented Tris egg yolk-based extender. The fertility of cryopreserved semen in the extenders supplemented with 10% and 15% PRP increased (P < 0.05) significantly more than that of the control extenders, with 10% PRP being the optimum concentration in OptiXcell® (80%) compared to that of Tris egg yolk-based extender (66.67%) and control of two extenders (53.33% and 46.67%, respectively). CONCLUSIONS: Even though autologous PRP-supplemented extenders have a protective impact on equilibrated and cryopreserved semen, 10% PRP-supplemented OptiXcell® extenders are more effective at preserving post-thaw semen quality, functionality, and antioxidant capacity, which increases the in vivo fertility of buffalo bulls.


Assuntos
Búfalos , Criopreservação , Plasma Rico em Plaquetas , Preservação do Sêmen , Animais , Masculino , Criopreservação/veterinária , Criopreservação/métodos , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Fertilidade , Gema de Ovo/química , Análise do Sêmen/veterinária , Crioprotetores/farmacologia , Inseminação Artificial/veterinária , Feminino , Sêmen , Espermatozoides/fisiologia , Espermatozoides/efeitos dos fármacos
12.
Biomed Pharmacother ; 177: 117005, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945084

RESUMO

Urine-derived stem cells (USCs) have gained the attention of researchers in the biomedical field in the past few years . Regarding the several varieties of cells that have been used for this purpose, USCs have demonstrated mesenchymal stem cell-like properties, such as differentiation and immunomodulation. Furthermore, they could be differentiated into several lineages. This is very interesting for regenerative techniques based on cell therapy. This review will embark on describing their separation, and profiling. We will specifically describe the USCs characteristics, in addition to their differentiation potential. Then, we will introduce and explore the primary uses of USCs. These involve thier utilization as a platform to produce stem cells, however, we shall concentrate on the utilization of USCs for therapeutic, and regenerative orofacial applications, providing an in-depth evaluation of this purpose. The final portion will address the limitations and challenges of their implementation in regenerative dentistry.


Assuntos
Medicina Regenerativa , Células-Tronco , Humanos , Células-Tronco/citologia , Medicina Regenerativa/métodos , Animais , Urina/citologia , Diferenciação Celular , Procedimentos de Cirurgia Plástica/métodos , Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia
13.
Life Sci ; 349: 122671, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697279

RESUMO

Nano carriers have gained more attention for their possible medical and technological applications. Tailored nanomaterials can transport medications efficiently to targeted areas and allow for sustained medication discharge, reducing undesirable toxicities while boosting curative effectiveness. Nonetheless, transitioning nanomedicines from experimental to therapeutic applications has proven difficult, so different pharmaceutical incorporation approaches in nano scaffolds are discussed. Then numerous types of nanobiomaterials implemented as carriers and their manufacturing techniques are explored. This article is also supported by various applications of nanobiomaterials in the biomedical field.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Engenharia Tecidual , Engenharia Tecidual/métodos , Humanos , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Animais , Nanoestruturas/química , Nanomedicina/métodos , Portadores de Fármacos/química , Alicerces Teciduais/química
14.
Bioorg Chem ; 148: 107449, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759356

RESUMO

Mitotic kinesin Eg5 isozyme as a motor protein plays a critical role in cell division of tumor cells. Kinesin Eg5 selective inhibitors and Colchicine binding site suppressors are essential targets for many anticancer drugs and radio chemotherapies. On this work, a new series of octahydroquinazoline as anti-mitotic candidates 2-13 has been synthesized with dual inhibition of tubulin polymerization/Eg5 against HCC cell line. All octahydroquinazolines have been in vitro assayed against HepG-2 cytotoxicity, Eg5 inhibitory and anti-tubulin polymerization activities. The most active analogues 7, 8, 9, 10, and 12 against HepG-2 were further subjected to in vitro cytotoxic assay against HCT-116 and MCF-7 cell lines. Chalcones 9, 10, and 12 displayed the most cytotoxic potency and anti-tubulin aggregation in comparable with reference standard colchicine and potential anti-mitotic Eg5 inhibitory activity in comparison with Monastrol as well. Besides, they exhibited cell cycle arrest at the G2/M phase. Moreover, good convinced apoptotic activities have been concluded as overexpression of caspase-3 levels and tumor suppressive gene p53 in parallel with higher induction of Bax and inhibition of Bcl-2 biomarkers. Octahydroquinazoline 10 displayed an increase in caspase-3 by 1.12 folds compared to standard colchicine and induce apoptosis and demonstrated cell cycle arrest in G2/M phase arrest by targeting p53 pathway. Analogue 10 has considerably promoted cytotoxic radiation activity and boosted apoptotic induction in HepG-2 cells by 1.5 fold higher than standard colchicine.


Assuntos
Antineoplásicos , Apoptose , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Cinesinas , Polimerização , Quinazolinas , Moduladores de Tubulina , Tubulina (Proteína) , Humanos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Polimerização/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo
15.
Reprod Toxicol ; 126: 108586, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38614435

RESUMO

This study examined the protective effects of a Petroselinum crispum (P. crispum) methanolic extract on reproductive dysfunction induced by acrylamide in male rats. A total of 40 rats were divided into four groups (n=10). The control group received distilled water, the acrylamide group received 10 mg/kg of acrylamide, the P. crispum group received 100 mg/kg of P. crispum extract, and the combined group was pretreated with P. crispum for two weeks before co-administration of P. crispum and acrylamide. All administrations were administered orally using a gastric tube for eight weeks. Acrylamide decreased testosterone levels but did not affect levels of FSH or LH. It also increased testicular levels of (MDA) malondialdehyde and reduced activity of (SOD) superoxide dismutase and impairment of sperm parameters. Furthermore, the administration of acrylamide resulted in an elevation of tumor necrosis factor-alpha (TNF-α) levels and a reduction in the levels of steroidogenic acute regulatory protein (STAR) and cytochrome P450scc (P450scc). Acrylamide negatively affected the histopathological outcomes, Johnsen's score, the diameter of seminiferous tubules, and the thickness of the germinal epithelium. It also upregulated the expression of NF-ĸB P65 and downregulated the expression of kinesin motor protein. In contrast, treatment with P. crispum extract restored the levels of antioxidant enzymes, improved sperm parameters, and normalized the gene expression of TNF-α, IL-10, IL-6, iNOS, NF-ĸB, STAR, CYP17A1, 17ß-HSD and P450scc. It also recovered testicular histological parameters and immunoexpression of NF-ĸB P65 and kinesin altered by acrylamide. P. crispum showed protective effects against acrylamide-induced reproductive toxicity by suppressing oxidative damage and inflammatory pathways.


Assuntos
Acrilamida , NF-kappa B , Extratos Vegetais , Testículo , Animais , Masculino , Acrilamida/toxicidade , Extratos Vegetais/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , NF-kappa B/metabolismo , Testosterona/sangue , Espermatozoides/efeitos dos fármacos , Ratos Sprague-Dawley , Metanol/química , Substâncias Protetoras/farmacologia , Ratos , Hormônio Luteinizante/sangue , Fosfoproteínas
16.
Vet Anim Sci ; 24: 100351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666236

RESUMO

Estrus synchronization is important for improving sheep reproduction. To enhance sheep reproduction efficiency, this study investigated the impact of different durations (7 vs. 14 days) and fluorogestone acetate (FGA) doses in intravaginal sponges on estrus synchronization and early pregnancy detection in Ossimi sheep. Two hundred ewes were evenly divided into two groups, each receiving a full 40 mg or a halved 20 mg FGA sponge for their respective durations. The study aimed to optimize breeding efficiency by examining the effectiveness of these treatments in synchronizing estrous cycles and by evaluating the use of serum levels of pregnancy-associated glycoprotein 1 (PAG1) and progesterone (P4) as markers for early pregnancy identification. Prostaglandin F2α and equine chorionic gonadotropin were administered to enhance the synchronization process. Results highlighted that the 7-day treatment protocol significantly improved estrus, pregnancy, and lambing rates compared to the 14-day protocol. Furthermore, pregnant ewes demonstrated elevated levels of PAG1 and P4, with PAG1 levels particularly higher in ewes with multiple pregnancies. The findings underscore that the shorter duration of FGA treatment is more effective for reproductive management in Ossimi sheep without significantly affecting PAG1 levels based on the dose or duration of FGA. PAG1 also proved to be a reliable marker for early pregnancy detection, offering a promising approach to identifying fetal numbers early in pregnancy. This research suggests optimizing FGA sponge use could be cost-efficient for improving reproductive efficiency and early pregnancy management in sheep.

17.
Bioorg Chem ; 145: 107244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428284

RESUMO

Complications of the worldwide use of non-steroidal anti-inflammatory drugs (NSAIDs) sparked scientists to design novel harmless alternatives as an urgent need. So, a unique hybridization tactic of quinoline/pyrazole/thioamide (4a-c) has been rationalized and synthesized as potential COX-2/15-LOX dual inhibitors, utilizing relevant reported studies on these pharmacophores. Moreover, we extended these preceding hybrids into more varied functionality, bearing crucial thiazole scaffolds(5a-l). All the synthesized hybrids were evaluatedin vitroas COX-2/15-LOX dual inhibitors. Initially, series4a-cexhibited significant potency towards 15-LOX inhibition (IC50 = 5.454-4.509 µM) compared to meclofenamate sodium (IC50 = 3.837 µM). Moreover, they revealed reasonable inhibitory activities against the COX-2 enzyme in comparison to celecoxib.Otherwise, conjugates 5a-ldisclosed marked inhibitory activity against 15-LOX and strong inhibitory to COX-2. In particular, hybrids5d(IC50 = 0.239 µM, SI = 8.95), 5h(IC50 = 0.234 µM, SI = 20.35) and 5l (IC50 = 0.201 µM, SI = 14.42) revealed more potency and selectivity outperforming celecoxib (IC50 = 0.512 µM, SI = 4.28). In addition, the most potentcompounds, 4a, 5d, 5h, and 5l have been elected for further in vivoevaluation and displayed potent inhibition of edema in the carrageenan-induced rat paw edema test that surpassed indomethacin. Further, compounds5d, 5h, and 5l decreased serum inflammatory markers including oxidative biomarkersiNO, and pro-inflammatory mediators cytokines like TNF-α, IL-6, and PGE. Ulcerogenic liability for tested compounds demonstrated obvious gastric mucosal safety. Furthermore, a histopathological study for compound 5l suggested a confirmatory comprehensive safety profile for stomach, kidney, and heart tissues. Docking and drug-likeness studies offered a good convention with the obtained biological investigation.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Quinolinas , Ratos , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Celecoxib/uso terapêutico , Ciclo-Oxigenase 1/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Simulação de Acoplamento Molecular , Anti-Inflamatórios não Esteroides , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Relação Estrutura-Atividade , Estrutura Molecular
18.
ChemMedChem ; 19(10): e202400004, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38356418

RESUMO

A new series of tetrasubstituted imidazole carrying sulfonamide as zinc-anchoring group has been designed. The structures of the synthesized derivatives 5 a-l have been confirmed by spectroscopic analysis. These compounds incorporate an ethylenic spacer between the benzenesulfonamide and the rest of the trisubstituted imidazole moiety and were tested as inhibitors of carbonic anhydrases and for in-vitro cytotoxicity. Most of them act as effective inhibitors of the tumor-linked CA isoforms IX and XII, in nanomolar range. Also, different compounds have shown selectivity in comparable with the standard acetazolamide. Our IBS 5 d, 5 g, and 5 l (with Ki: 10.1, 19.4, 19.8 nM against hCA IX and 47, 45, 20 nM against hCA IX) showed the best inhibitory profile. In-vitro screening of all derivatives against a full sixty-cell-lined from NCI at a single dose of 10 µM offered growth inhibition of up to 45 %. Compound 5 b has been identified with the most potent cytotoxic activity and broad spectrum. Docking studies have also been implemented and were also in accordance with the biological outcomes. Our SAR analysis has interestingly proposed efficient tumor-related hCAs IX/XII suppression.


Assuntos
Benzenossulfonamidas , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Imidazóis , Humanos , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Imidazóis/síntese química , Imidazóis/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia
19.
Bioorg Chem ; 136: 106560, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121108

RESUMO

In this work, a novel promising hybrid mode of uracil/thiouracil based quinoline pharmacophore i.e. 5a-f was rationalized and synthesized based on rigidification and lipophilic principles, and following the reported pharmacophoric features of camptothecin & doxorubicin. Concurrently, a non-rigid mode pharmacophore i.e. 7a-f was also designed and synthesized. The anti-proliferative activity of the compounds was assessed against three different cancer cell lines, namely A549 lung cancer, MCF-7 breast adenocarcinoma, and HepG-2 hepatic carcinoma. Further, promising candidates were evaluated against A549, and MCF-7 and for their ability to inhibit topoisomerases I &II. Compound 5f was observed to be the most active congener, displaying the highest cell inhibition of 84.4% for topoisomerase I and 92%, for topoisomerase II at a concentration of 100 µM. When its cytotoxicity was evaluated against A549 cells, 5f arrested the cell cycle at the S phase and increased the apoptosis ratio by 46.31%. DFT calculation of 5f showed higher dipole moment and greater negative energy values (-247531.510 kcal/mol) with positive & negative poles, and better stability reflection. Furthermore, molecular docking of 5f to both enzymes showed good agreement with the biological assessment. This study has given insight for further consideration of the highly promising hybrid 5f.


Assuntos
Antineoplásicos , Quinolinas , Estrutura Molecular , Relação Estrutura-Atividade , Tiouracila/farmacologia , Simulação de Acoplamento Molecular , Uracila/farmacologia , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores da Topoisomerase II/farmacologia , Quinolinas/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo
20.
ChemMedChem ; 18(8): e202200641, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36754780

RESUMO

A new series of tetrasubstituted imidazole derivatives carrying pyrimidine sulfonamide pharmacophores has been synthesized and evaluated for their anticancer activities. In-vitro screening of these hybrids against a full 60-cell-line panel at a single dose of 10 µM showed significant growth inhibition of up to 95 %. The most active compound showed in-vitro anticancer activities against (i) abnormal HER2 and (ii) two mutants for EGFR. Apoptotic gene expression revealed that lead compounds induced MCF-7 cell line apoptosis together with considerable change in the Bax/Bcl-2 expression ratio. One lead compound led to a significant cell-cycle S-phase arrest, while another blocked the cell cycle at G1/S-phase causing the accumulation of cells. Docking analysis of these two hybrids adopted the orientation and binding interactions with a higher liability to enter the active side pocket of HER2, L858R, and T790 M, preferable to that of co-crystallized ligands. Modelling simulation was consistent with the acquired biological evaluation.


Assuntos
Antineoplásicos , Humanos , Relação Estrutura-Atividade , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Células MCF-7 , Sulfanilamida/farmacologia , Receptores ErbB , Pirimidinas/farmacologia , Pirimidinas/química , Imidazóis/farmacologia , Apoptose , Linhagem Celular Tumoral , Estrutura Molecular , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA