Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Ginseng Res ; 48(2): 202-210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465210

RESUMO

Background: Panax ginseng Meyer polysaccharides exhibit various biological functions, like antagonizing galectin-3-mediated cell adhesion and migration. Galectin-8 (Gal-8), with its linker-joined N- and C-terminal carbohydrate recognition domains (CRDs), is also crucial to these biological processes, and thus plays a role in various pathological disorders. Yet the effect of ginseng-derived polysaccharides in modulating Gal-8 function has remained unclear. Methods: P. ginseng-derived pectin was chromatographically isolated and enzymatically digested to obtain a series of polysaccharides. Biolayer Interferometry (BLI) quantified their binding affinity to Gal-8, and their inhibitory effects on Gal-8 was assessed by hemagglutination, cell migration and T-cell apoptosis. Results: Our ginseng-derived pectin polysaccharides consist mostly of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG). BLI shows that Gal-8 binding rests primarily in RG-I and its ß-1,4-galactan side chains, with sub-micromolar KD values. Both N- and C-terminal Gal-8 CRDs bind RG-I, with binding correlated with Gal-8-mediated function. Conclusion: P. ginseng RG-I pectin ß-1,4-galactan side chains are crucial to binding Gal-8 and antagonizing its function. This study enhances our understanding of galectin-sugar interactions, information that may be used in the development of pharmaceutical agents targeting Gal-8.

2.
Int J Biol Macromol ; 256(Pt 1): 128304, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992938

RESUMO

Galectin-3 (Gal-3) is unique in the galectin family, due to the presence of a long N-terminal tail (NT) arising from its conserved carbohydrate recognition domain (CRD). Although functional significance of the NT has remained elusive, our previous studies demonstrated the importance of NT prolines to Gal-3 function. Here, we show that during the time Gal-3 stands in solution for three or more days, Gal-3 NT undergoes a slow, intra-molecular, time-dependent conformational/dynamical change associated with proline cis-trans isomerization. From initial dissolution of Gal-3 in buffer to three days in solution, Gal-3-mediated T cell apoptosis is enhanced from 23 % to 37 %. Western blotting and flow cytometry show that the enhancement occurs via the ROS-ERK pathway, and not by the PKC-ERK pathway. To assess which proline(s) is (are) responsible for this effect, we individually mutated all 14 NT prolines within the first 68 residues to alanines, and assessed their effect on ROS production. Our study shows that isomerization of P46 alone is responsible for the upregulation of ROS and T cell apoptosis. NMR studies show that this unique effect is mediated by a change in dynamic interactions between the NT and CRD F-face, which in turn leads to this change in Gal-3 function.


Assuntos
Galectina 3 , Sistema de Sinalização das MAP Quinases , Galectina 3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Isomerismo , Prolina/química , Galectinas/metabolismo , Carboidratos/química , Apoptose , Linfócitos T/metabolismo
3.
Front Chem ; 11: 1227288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608863

RESUMO

Introduction: Polysaccharides, key components present in Grifola frondosa, can be divided into those derived from fruiting bodies, mycelium, and fermentation broth based on their source. The structure of G. frondosa fruiting body-derived polysaccharides has been fully characterized. However, the structure of G. frondosa mycelium-derived polysaccharides remains to be elucidated. Methods: In this study, we obtained mycelia from G. frondosa by liquid fermentation and extracted them with water and alkaline solution. Then, the mycelia were isolated and purified to obtain homogeneity and systematically characterized by methylation and FT infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. Results and discussion: Structural analysis showed that two neutral fractions (WGFP-N-a and AGFP-N-a1) have a common backbone composed of α-1,6-D-Me-Galp and α-1,6-D-Galp that were substituted at O-2 by 1,2-Manp, α-1,3-L-Fucp, and α-T-D-Manp and thus are identified as fucomannogalactans. WGFP-A-a, AGFP-A-b, and AGFP-A-c are ß-1,6-glucans with different molecular weights and are branched with ß-1,3-D-Glcp and T-D-Glcp at the O-3 of Glc. Our results provide important structural information about G. frondosa mycelium-derived polysaccharides and provide the basis for their further development and application.

4.
Carbohydr Polym ; 313: 120889, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182975

RESUMO

Commercially-supplied potato galactan (PG) is widely used as a model polysaccharide in various bioactivity studies. However, results using this galactan are not always consistent with the stated composition. Here, we assessed its composition by fractionating this commercial PG and purified its primary components: PG-A, PG-B and PG-Cp with weight-averaged molecular weights of 430, 93, and 11.3 kDa, respectively. PG-Cp consists of free ß-1,4-galactan chains, whereas PG-A and PG-B are type I rhamnogalacturonans with long ß-1,4-galactan side chains of up to 80 Gal residues and short ß-1,4-galactan side chains of 0 to 3 Gal residues that display a "trees in lawn" pattern. Structures of these polysaccharides correlate well with their activities in terms of galectin-3 binding and gut bacterial growth assays. Our study clarifies the confusion related to commercial PG, with purified fractions serving as better model polysaccharides in bioactivity investigations.


Assuntos
Galactanos , Solanum tuberosum , Galactanos/química , Solanum tuberosum/química , Pectinas/química , Polissacarídeos/química , Galectina 3/metabolismo
5.
Front Immunol ; 13: 859923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585984

RESUMO

Polysaccharides from Pleurotus eryngii exhibit a variety of biological activities. Here, we obtained a homogeneous branched ß-1,6-glucan (APEP-A-b) from the fruiting bodies of P. eryngii and investigated its effect on immunity and gut microbiota. Our results showed that APEP-A-b significantly increases splenic lymphocyte proliferation, NK cell activity and phagocytic capacity of peritoneal cavity phagocytes. Furthermore, we found that the proportion of CD4+ and CD8+ T cells in lamina propria are significantly increased upon APEP-A-b treatment. Additionally, APEP-A-b supplementation demonstrated pronounced changes in microbiota reflected in promotion of relative abundances of species in the Lachnospiraceae and Rikenellaceae families. Consistently, APEP-A-b significantly increased the concentration of acetic and butyric acid in cecum contents. Overall, our results suggest that ß-1,6-glucan from P. eryngii might enhance immunity by modulating microbiota. These results are important for the processing and product development of P. eryngii derived polysaccharides.


Assuntos
Microbioma Gastrointestinal , Linfócitos T CD8-Positivos , Glucanos , Humanos , Pleurotus , Polissacarídeos , beta-Glucanas
6.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33952698

RESUMO

Galectin-3 (Gal-3) has a long, aperiodic, and dynamic proline-rich N-terminal tail (NT). The functional role of the NT with its numerous prolines has remained enigmatic since its discovery. To provide some resolution to this puzzle, we individually mutated all 14 NT prolines over the first 68 residues and assessed their effects on various Gal-3-mediated functions. Our findings show that mutation of any single proline (especially P37A, P55A, P60A, P64A/H, and P67A) dramatically and differentially inhibits Gal-3-mediated cellular activities (i.e., cell migration, activation, endocytosis, and hemagglutination). For mechanistic insight, we investigated the role of prolines in mediating Gal-3 oligomerization, a fundamental process required for these cell activities. We showed that Gal-3 oligomerization triggered by binding to glycoproteins is a dynamic process analogous to liquid-liquid phase separation (LLPS). The composition of these heterooligomers is dependent on the concentration of Gal-3 as well as on the concentration and type of glycoprotein. LLPS-like Gal-3 oligomerization/condensation was also observed on the plasma membrane and disrupted endomembranes. Molecular- and cell-based assays indicate that glycan binding-triggered Gal-3 LLPS (or LLPS-like) is driven mainly by dynamic intermolecular interactions between the Gal-3 NT and the carbohydrate recognition domain (CRD) F-face, although NT-NT interactions appear to contribute to a lesser extent. Mutation of each proline within the NT differentially controls NT-CRD interactions, consequently affecting glycan binding, LLPS, and cellular activities. Our results unveil the role of proline polymorphisms (e.g., at P64) associated with many diseases and suggest that the function of glycosylated cell surface receptors is dynamically regulated by Gal-3.


Assuntos
Galectina 3/química , Galectina 3/metabolismo , Polissacarídeos/metabolismo , Prolina/metabolismo , Sítios de Ligação , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Carboidratos , Galectina 3/genética , Galectinas , Glicosilação , Humanos , Ligação Proteica
7.
J Biol Chem ; 296: 100515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33676890

RESUMO

Heat-modified citrus pectin, a water-soluble indigestible polysaccharide fiber derived from citrus fruits and modified by temperature treatment, has been reported to exhibit anticancer effects. However, the bioactive fractions and their mechanisms remain unclear. In this current study, we isolated an active compound, trans-4,5-dihydroxy-2-cyclopentene-l-one (DHCP), from heat-treated citrus pectin, and found that is induces cell death in colon cancer cells via induction of mitochondrial ROS. On the molecular level, DHCP triggers ROS production by inhibiting the activity of succinate ubiquinone reductase (SQR) in mitochondrial complex II. Furthermore, cytotoxicity, apoptotic activity, and activation of caspase cascades were determined in HCT116 and HT-29 cell-based systems, the results indicated that DHCP enhances the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with DHCP-induced ROS accounting for the synergistic effect between DHCP and TRAIL. Furthermore, the combination of DHCP and TRAIL inhibits the growth of HCT116 and HT-29 xenografts synergistically. ROS significantly increases the expression of TRAIL death receptor 5 (DR5) via the p53 and C/EBP homologous protein pathways. Collectively, our findings indicate that DHCP has a favorable toxicity profile and is a new TRAIL sensitizer that shows promise in the development of pectin-based pharmaceuticals, nutraceuticals, and dietary agents aimed at combating human colon cancer.


Assuntos
Citrus/química , Neoplasias do Colo/tratamento farmacológico , Ciclopentanos/farmacologia , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Glycobiology ; 31(3): 341-350, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909036

RESUMO

Galectin-3 is crucial to many physiological and pathological processes. The generally accepted dogma is that galectins function extracellularly by binding specifically to ß(1→4)-galactoside epitopes on cell surface glycoconjugates. Here, we used crystallography and NMR spectroscopy to demonstrate that negatively charged homogalacturonans (HG, linear polysaccharides of α(1→4)-linked-D-galacturonate (GalA)) bind to the galectin-3 carbohydrate recognition domain. The HG carboxylates at the C6 positions in GalA rings mandate that this saccharide bind galectin-3 in an unconventional, "topsy-turvy" orientation that is flipped by about 180o relative to that of the canonical ß-galactoside lactose. In this binding mode, the reducing end GalA ß-anomer of HGs takes the position of the nonreducing end galactose residue in lactose. This novel orientation maintains interactions with the conserved tryptophan and seven of the most crucial lactose-binding residues, albeit with different H-bonding interactions. Nevertheless, the HG molecular orientation and new interactions have essentially the same thermodynamic binding parameters as lactose. Overall, our study provides structural details for a new type of galectin-sugar interaction that broadens glycospace for ligand binding to Gal-3 and suggests how the lectin may recognize other negatively charged polysaccharides like glycoaminoglycans (e.g. heparan sulfate) on the cell surface. This discovery impacts on our understanding of galectin-mediated biological function.


Assuntos
Galectina 3/química , Oligossacarídeos/química , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares
9.
FEBS J ; 288(3): 1041-1055, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32525264

RESUMO

The expression of prototype galectin-14 (Gal-14) in human placenta is higher than any other galectin, suggesting that it may play a role in fetal development and regulation of immune tolerance during pregnancy. Here, we solved the crystal structure of dimeric Gal-14 and found that its global fold is significantly different from that of other galectins with two ß-strands (S5 and S6) extending from one monomer and contributing to the carbohydrate-binding domain of the other. The hemagglutination assay showed that this lectin could induce agglutination of chicken erythrocytes, even though lactose could not inhibit Gal-14-induced agglutination activity. Calorimetry indicates that lactose does not interact with this lectin. Compared to galectin-1, galectin-3, and galectin-8, Gal-14 has two key amino acids (a histidine and an arginine) in the normally conserved, canonical sugar-binding site, which are substituted by glutamine (Gln53) and histidine (His57), thus likely explaining why lactose binding to this lectin is very weak. Lactose was observed in the ligand-binding site of one Gal-14 structure, most likely because ligand binding is weak and crystals were allowed to grow over a long period of time in the presence of lactose. We also found that EGFP-tagged Gal-14 is primarily localized within the nucleus of different cell types. In addition, Gal-14 colocalized with c-Rel (a member of NF-κB family) in HeLa cells. These findings indicate that Gal-14 might regulate signal transduction pathways through NF-κB hubs. Overall, the present study provides impetus for further research into the function of Gal-14 in embryology.


Assuntos
Galectinas/química , Galectinas/genética , Regulação da Expressão Gênica no Desenvolvimento , Lactose/química , Domínios Proteicos , Linhagem Celular Tumoral , Cristalografia por Raios X , Feminino , Galectinas/metabolismo , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Lactose/metabolismo , Ligantes , Microscopia Confocal , Modelos Moleculares , Ligação Proteica
10.
ChemMedChem ; 16(4): 713-723, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33156953

RESUMO

Calix[4]arene PTX008 is an angiostatic agent that inhibits tumor growth in mice by binding to galectin-1, a ß-galactoside-binding lectin. To assess the affinity profile of PTX008 for galectins, we used 15 N,1 H HSQC NMR spectroscopy to show that PTX008 also binds to galectin-3 (Gal-3), albeit more weakly. We identified the contact site for PTX008 on the F-face of the Gal-3 carbohydrate recognition domain. STD NMR revealed that the hydrophobic phenyl ring crown of the calixarene is the binding epitope. With this information, we performed molecular modeling of the complex to assist in improving the rather low affinity of PTX008 for Gal-3. By removing the N-dimethyl alkyl chain amide groups, we produced PTX013 whose reduced alkyl chain length and polar character led to an approximately eightfold stronger binding than PTX008. PTX013 also binds Gal-1 more strongly than PTX008, whereas neither interacts strongly, if at all, with Gal-7. In addition, PTX013, like PTX008, is an allosteric inhibitor of galectin binding to the canonical ligand lactose. This study broadens the scope for galectin targeting by calixarene-based compounds and opens the perspective for selective galectin blocking.


Assuntos
Proteínas Sanguíneas/antagonistas & inibidores , Calixarenos/farmacologia , Galectinas/antagonistas & inibidores , Fenóis/farmacologia , Polissacarídeos/farmacologia , Sítios de Ligação , Proteínas Sanguíneas/metabolismo , Calixarenos/química , Relação Dose-Resposta a Droga , Galectinas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fenóis/química , Polissacarídeos/química , Relação Estrutura-Atividade
11.
Biochim Biophys Acta Gen Subj ; 1865(1): 129755, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011338

RESUMO

BACKGROUND: The structure of human galectin-16 (Gal-16) has yet to be solved, and its function has remained elusive. METHODS: X-ray crystallography was used to determine the atomic structures of Gal-16 and two of its mutants. The Gal-16 oligomer state was investigated by gel filtration, its hemagglutination activity was determined along with its ability to bind lactose using ITC. The cellular distribution of EGFP-tagged Gal-16 in various cell lines was also investigated, and the interaction between Gal-16 and c-Rel was assessed by pull-down studies, microscale thermophoresis and immunofluorescence. RESULTS: Unlike other galectins, Gal-16 lacks the ability to bind the ß-galactoside lactose. Lactose binding could be regained by replacing an arginine (Arg55) with asparagine, as shown in the crystal structures of two lactose-loaded Gal-16 mutants (R55N and R55N/H57R). Gal-16 was also shown to be monomeric by gel filtration, as well as in crystal structures. Thus, this galectin could not induce erythrocyte agglutination. EGFP-tagged Gal-16 was found to be localized mostly in the nucleus of various cell types, and can interact with c-Rel, a member of NF-κB family. CONCLUSIONS: Gal-16 exists as a monomer and its ligand binding is significantly different from that of other prototype galectins, suggesting that it has a novel function(s). The interaction between Gal-16 and c-Rel indicates that Gal-16 may regulate signal transduction pathways via the c-Rel hub in B or T cells at the maternal-fetal interface. GENERAL SIGNIFICANCE: The present study lays the foundation for further studies into the cellular and physiological functions of Gal-16.


Assuntos
Lactose/metabolismo , Linfócitos/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica
12.
Carbohydr Polym ; 247: 116715, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829842

RESUMO

Tumor-associated macrophages (TAMs) with an M2-like phenotype have been linked to immunosuppression and resistance to chemotherapies of cancer, thus targeting TAMs has been an attractive therapeutic strategy to cancer immunotherapy. We have reported that the ß-D-(1→6) glucan (AAMP-A70) isolated from Amillariella Mellea could promote macrophage activation. The present study showed that the ß-1,6-glucan could promote the transformation of M2-like macrophages to M1-like phenotype and inhibit the viability of colon cancer cells in vitro and in vivo. On a cellular mechanistic level, the ß-1,6-glucan reset tumor-promoting M2-like macrophages to tumor-inhibiting M1-like phenotype via increasing the phosphorylation of Akt/NF-κB and MAPK. Further, TLR2 was identified as the receptor of ß-1,6-glucan in the transformation effect. In addition, a very similar ß-1,6-glucan with side chains of ß-Glc or α-Galρ which was purified from Lentinus edodes showed same activities with those from Amillariella Mellea. Our findings shed light on the action mode of ß-1,6-glucan in cancer immunotherapy.


Assuntos
Agaricales/metabolismo , Neoplasias do Colo/prevenção & controle , Ativação de Macrófagos/imunologia , Macrófagos Associados a Tumor/imunologia , beta-Glucanas/química , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Glycobiology ; 30(2): 120-129, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31584064

RESUMO

Galectin-13 (Gal-13) plays numerous roles in regulating the relationship between maternal and fetal tissues. Low expression levels or mutations of the lectin can result in pre-eclampsia. The previous crystal structure and gel filtration data show that Gal-13 dimerizes via formation of two disulfide bonds formed by Cys136 and Cys138. In the present study, we mutated them to serine (C136S, C138S and C136S/C138S), crystalized the variants and solved their crystal structures. All variants crystallized as monomers. In the C136S structure, Cys138 formed a disulfide bond with Cys19, indicating that Cys19 is important for regulation of reversible disulfide bond formation in this lectin. Hemagglutination assays demonstrated that all variants are inactive at inducing erythrocyte agglutination, even though gel filtration profiles indicate that C136S and C138S could still form dimers, suggesting that these dimers do not exhibit the same activity as wild-type (WT) Gal-13. In HeLa cells, the three variants were found to be distributed the same as with WT Gal-13. However, a Gal-13 variant (delT221) truncated at T221 could not be transported into the nucleus, possibly explaining why women having this variant get pre-eclampsia. Considering the normally high concentration of glutathione in cells, WT Gal-13 should exist mostly as a monomer in cytoplasm, consistent with the monomeric variant C136S/C138S, which has a similar ability to interact with HOXA1 as WT Gal-13.


Assuntos
Dissulfetos , Galectinas , Proteínas da Gravidez , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Feminino , Galectinas/química , Galectinas/metabolismo , Células HeLa , Humanos , Oxirredução , Pré-Eclâmpsia/metabolismo , Gravidez , Proteínas da Gravidez/química , Proteínas da Gravidez/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
14.
Carbohydr Polym ; 226: 115295, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31582086

RESUMO

Tumor-associated macrophages (TAMs) with an M2-like phenotype have been linked to the proliferation, invasion and metastasis of tumor cells. Resetting tumor-associated macrophages represents an attractive target for an effective cancer immunotherapy. WCCP-N-b, a novel linear 3-O-methylated galactan, isolated from Cantharellus cibarius, can convert tumor-promoting M2-like macrophages to tumor-inhibiting M1-like phenotype. On a cellular mechanistic level, WCCP-N-b inhibited M2-like macrophages polarization through suppression of STAT6 activation. Furthermore, WCCP-N-b increased the phosphorylation of mitogen-activated protein kinases (MAPKs) and degradation of IκB-α through targeting Toll-like receptor 2 (TLR2). The activation of MAPKs and degradation of IκB-α were responsible for converting M2-like macrophages to M1-like macrophages. Importantly, cell culture supernatants of WCCP-N-b-treated M2-like macrophages could inhibit the cell viability of B16F1 and B16F10. Our findings provide a potential natural and harmless polysaccharide for macrophage-based tumor immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Galactanos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Animais , Basidiomycota/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Fator de Transcrição STAT6/metabolismo , Receptor 2 Toll-Like/metabolismo
15.
Carbohydr Polym ; 219: 121-129, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151509

RESUMO

Galectin-3 (Gal-3) can induce T-cell activation and apoptosis and plays a role in tumor immune tolerance. Here, we demonstrate that ginseng pectins selectively inhibit Gal-3-induced T-cell apoptosis, while not affecting T-cell activation. This finding stands in contrast to that from the use of modified citrus pectin (MCP) and potato galactan (P-galactan) that inhibit both. Whereas PKC/ERK and ROS/ERK pathways are involved in both T-cell activation and apoptosis, the Ras/PI3K/Akt pathway is unique to T-cell activation. Ginseng pectins selectively inhibit the ROS/ERK pathway. Using the Sarcomar-180 mouse model in which Gal-3 expression is increased, we found that ginseng pectins (but not MCP or P-galactan) significantly promote T-cell proliferation and IL-2 expression, and inhibit tumor growth by 45%. These in vivo data correlate well with selective effects of pectins on Gal-3-mediated T-cell apoptosis and activation. Our study suggests a novel approach for the development of polysaccharide-based agents that target Gal-3 function.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Galactanos/farmacologia , Galectina 3/metabolismo , Panax/metabolismo , Pectinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T , Animais , Linhagem Celular Tumoral , Humanos , Interleucina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
Glycobiology ; 29(8): 608-618, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31094416

RESUMO

Galectin-3 (Gal-3) binds to cell adhesion glycoprotein CD146 to promote cytokine secretion and mediate endothelial cell migration. Here, we used Nuclear Magnetic Resonance (NMR) 15N-Heteronuclear Single Quantum Coherence (HSQC) spectroscopy to investigate binding between 15N-labeled Gal-3 and the extracellular domain (eFL) of purified CD146 (five Ig-like ectodomains D1-D5) and a shorter, D5-deleted version of CD146 (D1-D4). Binding of Gal-3 and its carbohydrate recognition domain (CRD) to CD146 D1-D4 is greatly reduced vis-à-vis CD146 eFL, supporting the proposal of a larger number of glycosylation sites on D5. Even though the canonical sugar-binding ß-sheet S-face (ß-strands 1, 10, 3, 4, 5, 6) of the Gal-3 ß-sandwich is involved in interactions with CD146 (e.g. N-linked glycosylation sites), equivalent HSQC spectral perturbations at residues on the opposing Gal-3 F-face ß-sheet (ß-strands 11, 2, 7, 8, 9) indicate involvement of the Gal-3 F-face in binding CD146. This is supported by the observation that addition of lactose, while significantly attenuating Gal-3 binding (primarily with the S-face) to CD146 eFL, does not abolish it. Bio-Layer Interferometry studies with Gal-3 F-face mutants yield KD values to demonstrate a significant decrease (L203A) or increase (V204A, L218A, T243A) in net binding to CD146 eFL compared to wild type Gal-3. However, HSQC lactose titrations show no highly significant effects on sugar binding to the Gal-3 CRD S-face. Overall, our findings indicate that Gal-3 binding to CD146 is more involved than simple interactions with ß-galactoside epitopes on the cell receptor, and that there is a direct role for the lectin's CRD F-face in the CD146 binding process.


Assuntos
Antígeno CD146/metabolismo , Galectina 3/química , Sítios de Ligação , Galectina 3/genética , Galectina 3/metabolismo , Células HEK293 , Humanos , Lactose/análogos & derivados , Mutação , Ligação Proteica
17.
Glycobiology ; 29(1): 85-93, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239701

RESUMO

Charcot-Leyden crystal protein/Gal-10, abundantly expressed in eosinophils and basophils, is related to several immune diseases. Recently, crystallographic and biochemical studies showed that Gal-10 cannot bind lactose, because a glutamate residue (Glu33) from another monomer blocks the binding site. Moreover, Gal-10 actually forms a novel dimeric structure compared to other galectins. To investigate the role that Glu33 plays in inhibiting lactose binding, we mutated this residue to glutamine, aspartate, and alanine. The structure of E33A shows that Gal-10 can now bind lactose. In the hemagglutination assay, lactose could inhibit E33A from inducing chicken erythrocyte agglutination. Furthermore, we identified a tryptophan residue (Trp127) at the interface of homodimer that is crucial for Gal-10 dimerization. The variant W127A, which exists as a monomer, exhibited higher hemagglutination activity than wild type Gal-10. The solid phase assay also showed that W127A could bind to lactose-modified sepharose-6B, whereas wild type Gal-10 could not. This indicates that the open carbohydrate-binding site of the W127A monomer can bind to lactose. In addition, the distribution of EGFP-tagged Gal-10 and its variants in HeLa cells was investigated. Because Trp72 is the highly conserved in the ligand binding sites of galectins, we used EGFP-tagged W72A to show that Gal-10 could not be transported into the nucleus, indicating that Trp72 is crucial for Gal-10 transport into that organelle.


Assuntos
Núcleo Celular/metabolismo , Galectinas/metabolismo , Multimerização Proteica , Transporte Ativo do Núcleo Celular/fisiologia , Substituição de Aminoácidos , Núcleo Celular/genética , Cristalografia por Raios X , Galectinas/química , Galectinas/genética , Células HeLa , Humanos , Lactose/química , Lactose/genética , Lactose/metabolismo , Mutação de Sentido Incorreto , Domínios Proteicos , Especificidade por Substrato
18.
Glycobiology ; 29(1): 74-84, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30204870

RESUMO

Galactans are linear polysaccharides of ß(1→4)-linked galactose residues. Although they can antagonize galectin function, the nature of their binding to galectins needs to be better defined to develop them as drugs. Here, we investigated interactions between galectin-3 (Gal-3) and a series of galactans ranging in weight average molecular weight from 670 to 7550 Da. 15N-1H HSQC NMR studies with 15N-labeled Gal-3 carbohydrate recognition domain (CRD) indicate that each of these galactans interacts primarily with residues in ß-strands 4, 5 and 6 on the canonical, ß-galactoside sugar binding S-face. Although these galactans also bind to full length Gal-3 (CRD plus N-terminal tail) to the same extent, it appears that binding to the S-face attenuates interactions between the CRD F-face and N-terminal tail, making interpretation of site-specific binding unclear. Following assignment of galactan 13C and 1H resonances using HSQC, HMBC and TOCSY experiments, we used 13C-1H HSQC data to demonstrate that the Gal-3 CRD binds to the terminal, non-reducing end of these galactans, regardless of their size, but with binding affinity increasing as the galactan chain length increases. Overall, our findings increase understanding as to how galactans interact with Gal-3 at the non-reducing, terminal end of galactose-containing polysaccharides as found on the cell surface.


Assuntos
Galactanos/química , Galectina 3/química , Proteínas Sanguíneas , Galectinas , Humanos , Peso Molecular , Ressonância Magnética Nuclear Biomolecular
19.
Biosci Rep ; 38(6)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30413611

RESUMO

Placental protein 13/galectin-13 (Gal-13) is highly expressed in placenta, where its lower expression is related to pre-eclampsia. Recently, the crystal structures of wild-type Gal-13 and its variant R53H at high resolution were solved. The crystallographic and biochemical results showed that Gal-13 and R53H could not bind lactose. Here, we used site-directed mutagenesis to re-engineer the ligand binding site of wild-type Gal-13, so that it could bind lactose. Of six newly engineered mutants, we were able to solve the crystal structures of four of them. Three variants (R53HH57R, R53HH57RD33G and R53HR55NH57RD33G had the same two mutations (R53 to H, and H57 to R) and were able to bind lactose in the crystal, indicating that these mutations were sufficient for recovering the ability of Gal-13 to bind lactose. Moreover, the structures of R53H and R53HR55N show that these variants could co-crystallize with a molecule of Tris. Surprisingly, although these variants, as well as wild-type Gal-13, could all induce hemagglutination, high concentrations of lactose could not inhibit agglutination, nor could they bind to lactose-modified Sepharose 6b beads. Overall, our results indicate that Gal-3 is not a normal galectin, which could not bind to ß-galactosides. Lastly, the distribution of EGFP-tagged wild-type Gal-13 and its variants in HeLa cells showed that they are concentrated in the nucleus and could be co-localized within filamentary materials, possibly actin.


Assuntos
Galactosídeos/metabolismo , Galectinas/química , Galectinas/metabolismo , Lactose/metabolismo , Proteínas da Gravidez/química , Proteínas da Gravidez/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Galectinas/análise , Galectinas/genética , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas da Gravidez/análise , Proteínas da Gravidez/genética
20.
Carbohydr Polym ; 199: 526-533, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143159

RESUMO

Galactans exhibit many biological activities, including modulation of human gut microbiota. By optimizing hydrolysis conditions and fractionation protocols, we purified a series of galacto-oligosaccharides from potato galactan, with degrees of polymerization (DP) up to 15. These oligosaccharides were characterized by using HPAEC, MALDI-TOF, 1H13C-NMR HSQC and HMBC experiments. Analysis of NMR data allowed chemical shift assignments to be made for oligos up to DP15. We used these NMR data to calculate intensity ratios of resonances from non-terminal to terminal residues, and correlated them with galactan chain length. Using this approach, we were able to estimate the length of galactan side chains in complex rhamnogalacturonan-I polysaccharides. Furthermore, we demonstrate here that prebiotic effects on Lactobacillus bacteria are related to galactan chain length, suggesting a potential application in the study of the human gut microbiome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA