Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7467, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978191

RESUMO

Increasing drought frequency and severity in a warming climate threaten forest ecosystems with widespread tree deaths. Canopy structure is important in regulating tree mortality during drought, but how it functions remains controversial. Here, we show that the interplay between tree size and forest structure explains drought-induced tree mortality during the 2012-2016 California drought. Through an analysis of over one million trees, we find that tree mortality rate follows a "negative-positive-negative" piecewise relationship with tree height, and maintains a consistent negative relationship with neighborhood canopy structure (a measure of tree competition). Trees overshadowed by tall neighboring trees experienced lower mortality, likely due to reduced exposure to solar radiation load and lower water demand from evapotranspiration. Our findings demonstrate the significance of neighborhood canopy structure in influencing tree mortality and suggest that re-establishing heterogeneity in canopy structure could improve drought resiliency. Our study also indicates the potential of advances in remote-sensing technologies for silvicultural design, supporting the transition to multi-benefit forest management.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Secas , Florestas , Água
2.
Glob Chang Biol ; 29(4): 1096-1105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36468232

RESUMO

Episodes of forest mortality have been observed worldwide associated with climate change, impacting species composition and ecosystem services such as water resources and carbon sequestration. Yet our ability to predict forest mortality remains limited, especially across large scales. Time series of satellite imagery has been used to document ecosystem resilience globally, but it is not clear how well remotely sensed resilience can inform the prediction of forest mortality across continental, multi-biome scales. Here, we leverage forest inventories across the continental United States to systematically assess the potential of ecosystem resilience derived using different data sets and methods to predict forest mortality. We found high resilience was associated with low mortality in eastern forests but was associated with high mortality in western regions. The unexpected resilience-mortality relation in western United States may be due to several factors including plant trait acclimation, insect population dynamics, or resource competition. Overall, our results not only supported the opportunity to use remotely sensed ecosystem resilience to predict forest mortality but also highlighted that ecological factors may have crucial influences because they can reverse the sign of the resilience-mortality relationships.


Assuntos
Ecossistema , Árvores , Estados Unidos , Florestas , Dinâmica Populacional , Sequestro de Carbono , Mudança Climática
3.
New Phytol ; 225(2): 679-692, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276231

RESUMO

Trees may survive prolonged droughts by shifting water uptake to reliable water sources, but it is unknown if the dominant mechanism involves activating existing roots or growing new roots during drought, or some combination of the two. To gain mechanistic insights on this unknown, a dynamic root-hydraulic modeling framework was developed that set up a feedback between hydraulic controls over carbon allocation and the role of root growth on soil-plant hydraulics. The new model was tested using a 5 yr drought/heat field experiment on an established piñon-juniper stand with root access to bedrock groundwater. Owing to the high carbon cost per unit root area, modeled trees initialized without adequate bedrock groundwater access experienced potentially lethal declines in water potential, while all of the experimental trees maintained nonlethal water potentials. Simulated trees were unable to grow roots rapidly enough to mediate the hydraulic stress, particularly during warm droughts. Alternatively, modeled trees initiated with root access to bedrock groundwater matched the hydraulics of the experimental trees by increasing their water uptake from bedrock groundwater when soil layers dried out. Therefore, the modeling framework identified a critical mechanism for drought response that required trees to shift water uptake among existing roots rather than growing new roots.


Assuntos
Carbono/metabolismo , Secas , Modelos Biológicos , Raízes de Plantas/fisiologia , Traqueófitas/fisiologia , Água/fisiologia , Simulação por Computador , Água Subterrânea , Juniperus/fisiologia , Pinus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 116(51): 25734-25744, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31767760

RESUMO

The response of forests to climate change depends in part on whether the photosynthetic benefit from increased atmospheric CO2 (∆Ca = future minus historic CO2) compensates for increased physiological stresses from higher temperature (∆T). We predicted the outcome of these competing responses by using optimization theory and a mechanistic model of tree water transport and photosynthesis. We simulated current and future productivity, stress, and mortality in mature monospecific stands with soil, species, and climate sampled from 20 continental US locations. We modeled stands with and without acclimation to ∆Ca and ∆T, where acclimated forests adjusted leaf area, photosynthetic capacity, and stand density to maximize productivity while avoiding stress. Without acclimation, the ∆Ca-driven boost in net primary productivity (NPP) was compromised by ∆T-driven stress and mortality associated with vascular failure. With acclimation, the ∆Ca-driven boost in NPP and stand biomass (C storage) was accentuated for cooler futures but negated for warmer futures by a ∆T-driven reduction in NPP and biomass. Thus, hotter futures reduced forest biomass through either mortality or acclimation. Forest outcomes depended on whether projected climatic ∆Ca/∆T ratios were above or below physiological thresholds that neutralized the negative impacts of warming. Critically, if forests do not acclimate, the ∆Ca/∆T must be above ca 89 ppm⋅°C-1 to avoid chronic stress, a threshold met by 55% of climate projections. If forests do acclimate, the ∆Ca/∆T must rise above ca 67 ppm⋅°C-1 for NPP and biomass to increase, a lower threshold met by 71% of projections.


Assuntos
Aclimatação/fisiologia , Dióxido de Carbono , Aquecimento Global , Modelos Biológicos , Árvores , Algoritmos , Secas , Florestas , Árvores/metabolismo , Árvores/fisiologia , Estados Unidos
5.
AoB Plants ; 11(5): plz056, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31656556

RESUMO

As growing seasons in the northwestern USA lengthen, on track with climate predictions, the mixed conifer forests that dominate this region will experience extended seasonal drought conditions. The year of 2015, which had the most extreme drought for the area on record, offered a potential analogue of future conditions. During this period, we measured the daily courses of water potential and gas exchange as well as the hydraulic conductivity and vulnerability to embolism of six dominant native conifer species, Abies grandis, Larix occidentalis, Pinus ponderosa, Pinus monticola, Pseudotsuga menziesii and Thuja occidentalis, to determine their responses to 5 months of record-low precipitation. The deep ash-capped soils of the region allowed gas exchange to continue without significant evidence of water stress for almost 2 months after the last rainfall event. Midday water potentials never fell below -2.2 MPa in the evergreen species and -2.7 MPa in the one deciduous species. Branch xylem was resistant to embolism, with P 50 values ranging from -3.3 to -7.0 MPa. Root xylem, however, was more vulnerable, with P 50 values from -1.3 to -4.6 MPa. With predawn water potentials as low as -1.3 MPa, the two Pinus species likely experienced declines in root hydraulic conductivity. Stomatal conductance of all six species was significantly responsive to vapour pressure only in the dry months (August-October), with no response evident in the wet months (June-July). While there were similarities among species, they exhibited a continuum of isohydry and safety margins. Despite the severity of this drought, all species were able to continue photosynthesis until mid-October, likely due to the mediating effects of the meter-deep, ash-capped silty-loam soils with large water storage capacity. Areas with these soil types, which are characteristic of much of the northwestern USA, could serve as refugia under drier and warmer future conditions.

6.
New Phytol ; 213(1): 113-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27432086

RESUMO

Elevated forest mortality has been attributed to climate change-induced droughts, but prediction of spatial mortality patterns remains challenging. We evaluated whether introducing plant hydraulics and topographic convergence-induced soil moisture variation to land surface models (LSM) can help explain spatial patterns of mortality. A scheme predicting plant hydraulic safety loss from soil moisture was developed using field measurements and a plant physiology-hydraulics model, TREES. The scheme was upscaled to Populus tremuloides forests across Colorado, USA, using LSM-modeled and topography-mediated soil moisture, respectively. The spatial patterns of hydraulic safety loss were compared against aerial surveyed mortality. Incorporating hydraulic safety loss raised the explanatory power of mortality by 40% compared to LSM-modeled soil moisture. Topographic convergence was mostly influential in suppressing mortality in low and concave areas, explaining an additional 10% of the variations in mortality for those regions. Plant hydraulics integrated water stress along the soil-plant continuum and was more closely tied to plant physiological response to drought. In addition to the well-recognized topo-climate influence due to elevation and aspect, we found evidence that topographic convergence mediates tree mortality in certain parts of the landscape that are low and convergent, likely through influences on plant-available water.


Assuntos
Populus/fisiologia , Água/fisiologia , Simulação por Computador , Desidratação , Secas , Ecossistema , Geografia , Solo , Sudoeste dos Estados Unidos , Pressão de Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA