Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
8.
Nat Commun ; 15(1): 1367, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355622

RESUMO

Anti-CD38 monoclonal antibodies like Daratumumab (Dara) are effective in multiple myeloma (MM); however, drug resistance ultimately occurs and the mechanisms behind this are poorly understood. Here, we identify, via two in vitro genome-wide CRISPR screens probing Daratumumab resistance, KDM6A as an important regulator of sensitivity to Daratumumab-mediated antibody-dependent cellular cytotoxicity (ADCC). Loss of KDM6A leads to increased levels of H3K27me3 on the promoter of CD38, resulting in a marked downregulation in CD38 expression, which may cause resistance to Daratumumab-mediated ADCC. Re-introducing CD38 does not reverse Daratumumab-mediated ADCC fully, which suggests that additional KDM6A targets, including CD48 which is also downregulated upon KDM6A loss, contribute to Daratumumab-mediated ADCC. Inhibition of H3K27me3 with an EZH2 inhibitor resulted in CD38 and CD48 upregulation and restored sensitivity to Daratumumab. These findings suggest KDM6A loss as a mechanism of Daratumumab resistance and lay down the proof of principle for the therapeutic application of EZH2 inhibitors, one of which is already FDA-approved, in improving MM responsiveness to Daratumumab.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Epigênese Genética , Histonas/metabolismo , ADP-Ribosil Ciclase 1 , Células Matadoras Naturais
10.
Blood ; 143(11): 996-1005, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37992230

RESUMO

ABSTRACT: Genomic instability contributes to cancer progression and is at least partly due to dysregulated homologous recombination (HR). Here, we show that an elevated level of ABL1 kinase overactivates the HR pathway and causes genomic instability in multiple myeloma (MM) cells. Inhibiting ABL1 with either short hairpin RNA or a pharmacological inhibitor (nilotinib) inhibits HR activity, reduces genomic instability, and slows MM cell growth. Moreover, inhibiting ABL1 reduces the HR activity and genomic instability caused by melphalan, a chemotherapeutic agent used in MM treatment, and increases melphalan's efficacy and cytotoxicity in vivo in a subcutaneous tumor model. In these tumors, nilotinib inhibits endogenous as well as melphalan-induced HR activity. These data demonstrate that inhibiting ABL1 using the clinically approved drug nilotinib reduces MM cell growth, reduces genomic instability in live cell fraction, increases the cytotoxicity of melphalan (and similar chemotherapeutic agents), and can potentially prevent or delay progression in patients with MM.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Melfalan/farmacologia , Instabilidade Genômica , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
12.
Leukemia ; 37(9): 1895-1907, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37198323

RESUMO

UTX/KDM6A, a histone H3K27 demethylase and a key component of the COMPASS complex, is frequently lost or mutated in cancer; however, its tumor suppressor function remains largely uncharacterized in multiple myeloma (MM). Here, we show that the conditional deletion of the X-linked Utx in germinal center (GC) derived cells collaborates with the activating BrafV600E mutation and promotes induction of lethal GC/post-GC B cell malignancies with MM-like plasma cell neoplasms being the most frequent. Mice that developed MM-like neoplasms showed expansion of clonal plasma cells in the bone marrow and extramedullary organs, serum M proteins, and anemia. Add-back of either wild-type UTX or a series of mutants revealed that cIDR domain, that forms phase-separated liquid condensates, is largely responsible for the catalytic activity-independent tumor suppressor function of UTX in MM cells. Utx loss in concert with BrafV600E only slightly induced MM-like profiles of transcriptome, chromatin accessibility, and H3K27 acetylation, however, it allowed plasma cells to gradually undergo full transformation through activation of transcriptional networks specific to MM that induce high levels of Myc expression. Our results reveal a tumor suppressor function of UTX in MM and implicate its insufficiency in the transcriptional reprogramming of plasma cells in the pathogenesis of MM.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Linfócitos B/metabolismo , Genes Supressores de Tumor , Centro Germinativo/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas B-raf/genética
13.
Gastroenterology ; 165(2): 357-373, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37178737

RESUMO

BACKGROUND & AIMS: The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS: An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS: Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS: Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.


Assuntos
Adenocarcinoma , Resistencia a Medicamentos Antineoplásicos , Masculino , Animais , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Recombinação Homóloga , Ciclo Celular , Instabilidade Genômica , Genômica , Instabilidade Cromossômica/genética , Desoxirribonucleases/genética , Evolução Molecular
14.
Clin Cancer Res ; 29(9): 1807-1821, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780189

RESUMO

PURPOSE: BRD9 is a defining component of the noncanonical SWI/SNF complex, which regulates gene expression by controlling chromatin dynamics. Although recent studies have found an oncogenic role for BRD9 in multiple cancer types including multiple myeloma, its clinical significance and oncogenic mechanism have not yet been elucidated. Here, we sought to identify the clinical and biological impact of BRD9 in multiple myeloma, which may contribute to the development of novel therapeutic strategies. EXPERIMENTAL DESIGN: We performed integrated analyses of BRD9 in vitro and in vivo using multiple myeloma cell lines and primary multiple myeloma cells in established preclinical models, which identified the molecular functions of BRD9 contributing to multiple myeloma cell survival. RESULTS: We found that high BRD9 expression was a poor prognostic factor in multiple myeloma. Depleting BRD9 by genetic (shRNA) and pharmacologic (dBRD9-A; proteolysis-targeting chimera; BRD9 degrader) approaches downregulated ribosome biogenesis genes, decreased the expression of the master regulator MYC, and disrupted the protein-synthesis maintenance machinery, thereby inhibiting multiple myeloma cell growth in vitro and in vivo in preclinical models. Importantly, we identified that the expression of ribosome biogenesis genes was associated with the disease progression and prognosis of patients with multiple myeloma. Our results suggest that BRD9 promotes gene expression by predominantly occupying the promoter regions of ribosome biogenesis genes and cooperating with BRD4 to enhance the transcriptional function of MYC. CONCLUSIONS: Our study identifies and validates BRD9 as a novel therapeutic target in preclinical models of multiple myeloma, which provides the framework for the clinical evaluation of BRD9 degraders to improve patient outcome.


Assuntos
Mieloma Múltiplo , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mieloma Múltiplo/genética , Proteínas Nucleares/genética , Ribossomos/genética , Ribossomos/metabolismo , Proteínas de Ciclo Celular
16.
Blood ; 141(21): 2599-2614, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630605

RESUMO

PSMD4/Rpn10 is a subunit of the 19S proteasome unit that is involved with feeding target proteins into the catalytic machinery of the 26S proteasome. Because proteasome inhibition is a common therapeutic strategy in multiple myeloma (MM), we investigated Rpn10 and found that it is highly expressed in MM cells compared with normal plasma cells. Rpn10 levels inversely correlated with overall survival in patients with MM. Inducible knockout or knockdown of Rpn10 decreased MM cell viability both in vitro and in vivo by triggering the accumulation of polyubiquitinated proteins, cell cycle arrest, and apoptosis associated with the activation of caspases and unfolded protein response-related pathways. Proteomic analysis revealed that inhibiting Rpn10 increased autophagy, antigen presentation, and the activation of CD4+ T and natural killer cells. We developed an in vitro AlphaScreen binding assay for high-throughput screening and identified a novel Rpn10 inhibitor, SB699551 (SB). Treating MM cell lines, leukemic cell lines, and primary cells from patients with MM with SB decreased cell viability without affecting the viability of normal peripheral blood mononuclear cells. SB inhibited the proliferation of MM cells even in the presence of the tumor-promoting bone marrow milieu and overcame proteasome inhibitor (PI) resistance without blocking the 20S proteasome catalytic function or the 19S deubiquitinating activity. Rpn10 blockade by SB triggered MM cell death via similar pathways as the genetic strategy. In MM xenograft models, SB was well tolerated, inhibited tumor growth, and prolonged survival. Our data suggest that inhibiting Rpn10 will enhance cytotoxicity and overcome PI resistance in MM, providing the basis for further optimization studies of Rpn10 inhibitors for clinical application.


Assuntos
Mieloma Múltiplo , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Proteômica , Leucócitos Mononucleares/metabolismo , Proteínas de Transporte/genética , Proteínas/metabolismo , Proteínas de Ligação a RNA
17.
Blood Cancer J ; 13(1): 12, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36631435

RESUMO

Multiple myeloma (MM) is a plasma cell malignancy characterised by aberrant production of immunoglobulins requiring survival mechanisms to adapt to proteotoxic stress. We here show that glutamyl-prolyl-tRNA synthetase (GluProRS) inhibition constitutes a novel therapeutic target. Genomic data suggest that GluProRS promotes disease progression and is associated with poor prognosis, while downregulation in MM cells triggers apoptosis. We developed NCP26, a novel ATP-competitive ProRS inhibitor that demonstrates significant anti-tumour activity in multiple in vitro and in vivo systems and overcomes metabolic adaptation observed with other inhibitor chemotypes. We demonstrate a complex phenotypic response involving protein quality control mechanisms that centers around the ribosome as an integrating hub. Using systems approaches, we identified multiple downregulated proline-rich motif-containing proteins as downstream effectors. These include CD138, transcription factors such as MYC, and transcription factor 3 (TCF3), which we establish as a novel determinant in MM pathobiology through functional and genomic validation. Our preclinical data therefore provide evidence that blockade of prolyl-aminoacylation evokes a complex pro-apoptotic response beyond the canonical integrated stress response and establish a framework for its evaluation in a clinical setting.


Assuntos
Aminoacil-tRNA Sintetases , Mieloma Múltiplo , Humanos , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo
18.
Blood ; 141(4): 391-405, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36126301

RESUMO

Long noncoding RNAs (lncRNAs) can drive tumorigenesis and are susceptible to therapeutic intervention. Here, we used a large-scale CRISPR interference viability screen to interrogate cell-growth dependency to lncRNA genes in multiple myeloma (MM) and identified a prominent role for the miR-17-92 cluster host gene (MIR17HG). We show that an MIR17HG-derived lncRNA, named lnc-17-92, is the main mediator of cell-growth dependency acting in a microRNA- and DROSHA-independent manner. Lnc-17-92 provides a chromatin scaffold for the functional interaction between c-MYC and WDR82, thus promoting the expression of ACACA, which encodes the rate-limiting enzyme of de novo lipogenesis acetyl-coA carboxylase 1. Targeting MIR17HG pre-RNA with clinically applicable antisense molecules disrupts the transcriptional and functional activities of lnc-17-92, causing potent antitumor effects both in vitro and in vivo in 3 preclinical animal models, including a clinically relevant patient-derived xenograft NSG mouse model. This study establishes a novel oncogenic function of MIR17HG and provides potent inhibitors for translation to clinical trials.


Assuntos
MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , Mieloma Múltiplo/genética , Cromatina , MicroRNAs/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
19.
Front Oncol ; 12: 1032775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330495

RESUMO

The incorporation of novel agents and monoclonal antibody-based therapies into the treatment of multiple myeloma (MM) has significantly improved long-term patient survival. However, the disease is still largely incurable, with high-risk patients suffering shorter survival times, partly due to weakened immune systems. Bispecific molecules, including bispecific antibodies (BisAbs) and bispecific T-cell engagers (BiTEs), encourage immune cells to lyse MM cells by simultaneously binding antigens on MM cells and immune effector cells, bringing those cells into close proximity. BisAbs that target B-cell maturation antigen (BCMA) and GPRC5D have shown impressive clinical activity, and the results of early-phase clinical trials targeting FcRH5 in patients with relapsed/refractory MM (RRMM) are also promising. Furthermore, the safety profile of these agents is favorable, including mainly low-grade cytokine release syndrome (CRS). These off-the-shelf bispecific molecules will likely become an essential part of the MM treatment paradigm. Here, we summarize and highlight various bispecific immunotherapies under development in MM treatment, as well as the utility of combining them with current standard-of-care treatments and new strategies. With the advancement of novel combination treatment approaches, these bispecific molecules may lead the way to a cure for MM.

20.
Blood Cancer J ; 12(8): 118, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973981

RESUMO

We here defined the impacts of γ-secretase inhibitors (GSIs) on T-cell-dependent BCMA-specific multiple myeloma (MM) cell lysis and immunomodulatory effects induced by bispecific antibodies (BisAbs). GSIs-induced membrane BCMA (mBCMA) accumulation reached near maximum within 4 h and sustained over 42h-study period on MM cell lines and patient MM cells. GSIs, i.e., 2 nM LY-411575 or 1 µM DAPT, robustly increased mBCMA densities on CD138+ but not CD3+ patient cells, concomitantly with minimum soluble/shed BCMA (sBCMA) in 1 day-culture supernatants. In ex vivo MM-T-cell co-cultures, GSIs overcame sBCMA-inhibited MM cell lysis and further enhanced autologous patient MM cell lysis induced by BCMAxCD3 BisAbs, accompanied by significantly enhanced cytolytic markers (CD107a, IFNγ, IL2, and TNFα) in patient T cells. In longer 7 day-co-cultures, LY-411575 minimally affected BCMAxCD3 BisAb (PL33)-induced transient expression of checkpoint (PD1, TIGIT, TIM3, LAG3) and co-stimulatory (41BB, CD28) proteins, as well as time-dependent increases in % effector memory/central memory subsets and CD8/CD4 ratios in patient T cells. Importantly, LY41157 rapidly cleared sBCMA from circulation of MM-bearing NSG mice reconstituted with human T cells and significantly enhanced anti-MM efficacy of PL33 with prolonged host survival. Taken together, these results further support ongoing combination BCMA-targeting immunotherapies with GSI clinical studies to improve patient outcome.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Secretases da Proteína Precursora do Amiloide , Animais , Anticorpos Biespecíficos/uso terapêutico , Antígeno de Maturação de Linfócitos B , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA