Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Microbiol ; 9(3): 698-711, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443575

RESUMO

Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea.


Assuntos
Haloferax volcanii , Complexo de Proteínas do Centro de Reação Fotossintética , Divisão Celular , Citoesqueleto , Haloferax volcanii/genética , Microscopia de Fluorescência
2.
Nat Commun ; 14(1): 7975, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042849

RESUMO

The bacterial enzymes FtsW and FtsI, encoded in the highly conserved dcw gene cluster, are considered to be universally essential for the synthesis of septal peptidoglycan (PG) during cell division. Here, we show that the pathogen Clostridioides difficile lacks a canonical FtsW/FtsI pair, and its dcw-encoded PG synthases have undergone a specialization to fulfill sporulation-specific roles, including synthesizing septal PG during the sporulation-specific mode of cell division. Although these enzymes are directly regulated by canonical divisome components during this process, dcw-encoded PG synthases and their divisome regulators are dispensable for cell division during normal growth. Instead, C. difficile uses a bifunctional class A penicillin-binding protein as the core divisome PG synthase, revealing a previously unreported role for this class of enzymes. Our findings support that the emergence of endosporulation in the Firmicutes phylum facilitated the functional repurposing of cell division factors. Moreover, they indicate that C. difficile, and likely other clostridia, assemble a distinct divisome that therefore may represent a unique target for therapeutic interventions.


Assuntos
Clostridioides difficile , Bactérias Formadoras de Endosporo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Peptidoglicano/metabolismo , Proteínas de Membrana/metabolismo , Bactérias Formadoras de Endosporo/metabolismo
3.
Nat Commun ; 14(1): 7642, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993432

RESUMO

E. coli and most other diderm bacteria (those with two membranes) have an inner membrane enriched in glycerophospholipids (GPLs) and an asymmetric outer membrane (OM) containing GPLs in its inner leaflet and primarily lipopolysaccharides in its outer leaflet. In E. coli, this lipid asymmetry is maintained by the Mla system which consists of six proteins: the OM lipoprotein MlaA extracts GPLs from the outer leaflet, and the periplasmic chaperone MlaC transfers them across the periplasm to the inner membrane complex MlaBDEF. However, GPL trafficking still remains poorly understood, and has only been studied in a handful of model species. Here, we investigate GPL trafficking in Veillonella parvula, a diderm Firmicute with an Mla system that lacks MlaA and MlaC, but contains an elongated MlaD. V. parvula mla mutants display phenotypes characteristic of disrupted lipid asymmetry which can be suppressed by mutations in tamB, supporting that these two systems have opposite GPL trafficking functions across diverse bacterial lineages. Structural modelling and subcellular localisation assays suggest that V. parvula MlaD forms a transenvelope bridge, comprising a typical inner membrane-localised MCE domain and, in addition, an outer membrane ß-barrel. Phylogenomic analyses indicate that this elongated MlaD type is widely distributed across diderm bacteria and likely forms part of the ancestral functional core of the Mla system, which would be composed of MlaEFD only.


Assuntos
Proteínas de Escherichia coli , Fosfolipídeos , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transporte Biológico , Glicerofosfolipídeos/metabolismo , Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Firmicutes , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
4.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609260

RESUMO

Current models of bacterial cell division assume that the core synthases of the multiprotein divisome complex, FtsW-FtsI, are the primary drivers of septal peptidoglycan (PG) synthesis. These enzymes are typically encoded in the highly conserved division and cell wall (dcw) cluster and are considered to be universally essential for cell division. Here, we combine bioinformatics analyses with functional characterization in the pathogen Clostridioides difficile to show that dcw-encoded PG synthases have undergone a surprising specialization in the sole endospore-forming phylum, Firmicutes, to fulfill sporulation-specific roles. We describe a novel role for these enzymes in synthesizing septal PG during the sporulation-specific mode of cell division in C. difficile. Although these enzymes are directly regulated by canonical divisome components during this process, dcw-encoded PG synthases and their divisome regulators are unexpectedly dispensable for cell division during normal growth. Instead, C. difficile uses its sole bifunctional class A penicillin-binding protein (aPBP) to drive cell division, revealing a previously unreported role for this class of PG synthases as the core divisome enzyme. Collectively, our findings reveal how the emergence of endosporulation in the Firmicutes phylum was a key driver for the functional repurposing of an otherwise universally conserved cellular process such as cell division. Moreover, they indicate that C. difficile, and likely other clostridia, assemble a divisome that differs markedly from previously studied bacteria, thus representing an attractive, unique target for therapeutic purposes.

6.
Nat Microbiol ; 7(12): 2114-2127, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36411352

RESUMO

The division and cell wall (dcw) gene cluster in Bacteria comprises 17 genes encoding key steps in peptidoglycan synthesis and cytokinesis. To understand the origin and evolution of this cluster, we analysed its presence in over 1,000 bacterial genomes. We show that the dcw gene cluster is strikingly conserved in both gene content and gene order across all Bacteria and has undergone only a few rearrangements in some phyla, potentially linked to cell envelope specificities, but not directly to cell shape. A large concatenation of the 12 most conserved dcw cluster genes produced a robust tree of Bacteria that is largely consistent with recent phylogenies based on frequently used markers. Moreover, evolutionary divergence analyses show that the dcw gene cluster offers advantages in defining high-rank taxonomic boundaries and indicate at least two main phyla in the Candidate Phyla Radiation (CPR) matching a sharp dichotomy in dcw gene cluster arrangement. Our results place the origin of the dcw gene cluster in the Last Bacterial Common Ancestor and show that it has evolved vertically for billions of years, similar to major cellular machineries such as the ribosome. The strong phylogenetic signal, combined with conserved genomic synteny at large evolutionary distances, makes the dcw gene cluster a robust alternative set of markers to resolve the ever-growing tree of Bacteria.


Assuntos
Parede Celular , Família Multigênica , Filogenia , Divisão Celular/genética , Parede Celular/genética , Bactérias/genética
7.
mBio ; 13(5): e0173222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36066101

RESUMO

During bacterial endospore formation, the developing spore is internalized into the mother cell through a phagocytic-like process called engulfment, which involves synthesis and hydrolysis of peptidoglycan. Engulfment peptidoglycan hydrolysis requires the widely conserved and well-characterized DMP complex, composed of SpoIID, SpoIIM, and SpoIIP. In contrast, although peptidoglycan synthesis has been implicated in engulfment, the protein players involved are less well defined. The widely conserved SpoIIIAH-SpoIIQ interaction is also required for engulfment efficiency, functioning like a ratchet to promote membrane migration around the forespore. Here, we screened for additional factors required for engulfment using transposon sequencing in Bacillus subtilis mutants with mild engulfment defects. We discovered that YrvJ, a peptidoglycan hydrolase, and the MurA paralog MurAB, involved in peptidoglycan precursor synthesis, are required for efficient engulfment. Cytological analyses suggest that both factors are important for engulfment when the DMP complex is compromised and that MurAB is additionally required when the SpoIIIAH-SpoIIQ ratchet is abolished. Interestingly, despite the importance of MurAB for sporulation in B. subtilis, phylogenetic analyses of MurA paralogs indicate that there is no correlation between sporulation and the number of MurA paralogs and further reveal the existence of a third MurA paralog, MurAC, within the Firmicutes. Collectively, our studies identify two new factors that are required for efficient envelop remodeling during sporulation and highlight the importance of peptidoglycan precursor synthesis for efficient engulfment in B. subtilis and likely other endospore-forming bacteria. IMPORTANCE In bacteria, cell envelope remodeling is critical for cell growth and division. This is also the case during the development of bacteria into highly resistant endospores (spores), known as sporulation. During sporulation, the developing spore becomes internalized inside the mother cell through a phagocytic-like process called engulfment, which is essential to form the cell envelope of the spore. Engulfment involves both the synthesis and hydrolysis of peptidoglycan and the stabilization of migrating membranes around the developing spore. Importantly, although peptidoglycan synthesis has been implicated during engulfment, the specific genes that contribute to this molecular element of engulfment have remained unclear. Our study identifies two new factors that are required for efficient envelope remodeling during engulfment and emphasizes the importance of peptidoglycan precursor synthesis for efficient engulfment in the model organism Bacillus subtilis and likely other endospore-forming bacteria. Finally, our work highlights the power of synthetic screens to reveal additional genes that contribute to essential processes during sporulation.


Assuntos
Bacillus subtilis , Peptidoglicano , Bacillus subtilis/metabolismo , Peptidoglicano/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Filogenia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos
8.
Nat Microbiol ; 7(3): 411-422, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246664

RESUMO

Recent data support the hypothesis that Gram-positive bacteria (monoderms) arose from Gram-negative ones (diderms) through loss of the outer membrane (OM), but how this happened remains unknown. As tethering of the OM is essential for cell envelope stability in diderm bacteria, its destabilization may have been involved in this transition. In the present study, we present an in-depth analysis of the four known main OM-tethering systems across the Tree of Bacteria (ToB). We show that the presence of such systems follows the ToB with a bimodal distribution matching the deepest phylogenetic divergence between Terrabacteria and Gracilicutes. Whereas the lipoprotein peptidoglycan-associated lipoprotein (Pal) is restricted to the Gracilicutes, along with a more sporadic occurrence of OmpA, and Braun's lipoprotein is present only in a subclade of Gammaproteobacteria, diderm Terrabacteria display, as the main system, the OmpM protein. We propose an evolutionary scenario whereby OmpM represents a simple, ancestral OM-tethering system that was later replaced by one based on Pal after the emergence of the Lol machinery to deliver lipoproteins to the OM, with OmpA as a possible transition state. We speculate that the existence of only one main OM-tethering system in the Terrabacteria would have allowed the multiple OM losses specifically inferred in this clade through OmpM perturbation, and we provide experimental support for this hypothesis by inactivating all four ompM gene copies in the genetically tractable diderm Firmicute Veillonella parvula. High-resolution imaging and tomogram reconstructions reveal a non-lethal phenotype in which vast portions of the OM detach from the cells, forming huge vesicles with an inflated periplasm shared by multiple dividing cells. Together, our results highlight an ancient shift of OM-tethering systems in bacterial evolution and suggest a mechanism for OM loss and the multiple emergences of the monoderm phenotype from diderm ancestors.


Assuntos
Bactérias , Bactérias Gram-Positivas , Bactérias/genética , Bactérias Gram-Positivas/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo , Periplasma/metabolismo , Filogenia
9.
J Eukaryot Microbiol ; 69(4): e12908, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322502

RESUMO

The alternative oxidase (AOX) is a protein involved in supporting enzymatic reactions of the Krebs cycle in instances when the canonical (cytochrome-mediated) respiratory chain has been inhibited, while allowing for the maintenance of cell growth and necessary metabolic processes for survival. Among eukaryotes, alternative oxidases have dispersed distribution and are found in plants, fungi, and protists, including Naegleria ssp. Naegleria species are free-living unicellular amoeboflagellates and include the pathogenic species of N. fowleri, the so-called "brain-eating amoeba." Using a multidisciplinary approach, we aimed to understand the evolution, localization, and function of AOX and the role that plays in Naegleria's biology. Our analyses suggest that AOX was present in last common ancestor of the genus and structure prediction showed that all functional residues are also present in Naegleria species. Using cellular and biochemical techniques, we also functionally characterize N. gruberi's AOX in its mitochondria, and we demonstrate that its inactivation affects its proliferation. Consequently, we discuss the benefits of the presence of this protein in Naegleria species, along with its potential pathogenicity role in N. fowleri. We predict that our findings will spearhead new explorations to understand the cell biology, metabolism, and evolution of Naegleria and other free-living relatives.


Assuntos
Naegleria fowleri , Naegleria , Eucariotos , Proteínas Mitocondriais , Oxirredutases/metabolismo , Proteínas de Plantas
10.
Methods Mol Biol ; 2281: 23-47, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847950

RESUMO

Single-stranded (ss) DNA-binding proteins are found in all three domains of life where they play vital roles in nearly all aspects of DNA metabolism by binding to and stabilizing exposed ssDNA and acting as platforms onto which DNA-processing activities can assemble. The ssDNA-binding factors SSB and RPA are extremely well conserved across bacteria and eukaryotes, respectively, and comprise one or more OB-fold ssDNA-binding domains. In the third domain of life, the archaea, multiple types of ssDNA-binding protein are found with a variety of domain architectures and subunit compositions, with OB-fold ssDNA-binding domains being a characteristic of most, but not all. This chapter summarizes current knowledge of the distribution, structure, and biological function of the archaeal ssDNA-binding factors, highlighting key features shared between clades and those that distinguish the proteins of different clades from one another. The likely cellular functions of the proteins are discussed and gaps in current knowledge identified.


Assuntos
Archaea/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Archaea/classificação , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Reparo do DNA , Replicação do DNA , DNA Arqueal/metabolismo , DNA de Cadeia Simples/química , Modelos Moleculares , Filogenia , Ligação Proteica , Domínios Proteicos , Especificidade da Espécie
11.
Science ; 372(6541): 516-520, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926955

RESUMO

Cells have two purine pathways that synthesize adenine and guanine ribonucleotides from phosphoribose via inosylate. A chemical hybrid between adenine and guanine, 2-aminoadenine (Z), replaces adenine in the DNA of the cyanobacterial virus S-2L. We show that S-2L and Vibrio phage PhiVC8 encode a third purine pathway catalyzed by PurZ, a distant paralog of succinoadenylate synthase (PurA), the enzyme condensing aspartate and inosylate in the adenine pathway. PurZ condenses aspartate with deoxyguanylate into dSMP (N6-succino-2-amino-2'-deoxyadenylate), which undergoes defumarylation and phosphorylation to give dZTP (2-amino-2'-deoxyadenosine-5'-triphosphate), a substrate for the phage DNA polymerase. Crystallography and phylogenetics analyses indicate a close relationship between phage PurZ and archaeal PurA enzymes. Our work elucidates the biocatalytic innovation that remodeled a DNA building block beyond canonical molecular biology.


Assuntos
2-Aminopurina/análogos & derivados , Adenilossuccinato Sintase/química , Bacteriófagos/química , Bacteriófagos/enzimologia , Vias Biossintéticas , DNA Viral/química , Proteínas não Estruturais Virais/química , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenilossuccinato Sintase/classificação , Adenilossuccinato Sintase/genética , Bacteriófagos/genética , Cristalografia por Raios X , DNA Viral/genética , Genoma Viral , Filogenia , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/genética
12.
ISME Commun ; 1(1): 47, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37938279

RESUMO

Other than the Methanobacteriales and Methanomassiliicoccales, the characteristics of archaea that inhabit the animal microbiome are largely unknown. Methanimicrococcus blatticola, a member of the Methanosarcinales, currently reunites two unique features within this order: it is a colonizer of the animal digestive tract and can only reduce methyl compounds with H2 for methanogenesis, a increasingly recognized metabolism in the archaea and whose origin remains debated. To understand the origin of these characteristics, we have carried out a large-scale comparative genomic analysis. We infer the loss of more than a thousand genes in M. blatticola, by far the largest genome reduction across all Methanosarcinales. These include numerous elements for sensing the environment and adapting to more stable gut conditions, as well as a significant remodeling of the cell surface components likely involved in host and gut microbiota interactions. Several of these modifications parallel those previously observed in phylogenetically distant archaea and bacteria from the animal microbiome, suggesting large-scale convergent mechanisms of adaptation to the gut. Strikingly, M. blatticola has lost almost all genes coding for the H4MPT methyl branch of the Wood-Ljungdahl pathway (to the exception of mer), a phenomenon never reported before in any member of Class I or Class II methanogens. The loss of this pathway illustrates one of the evolutionary processes that may have led to the emergence of methyl-reducing hydrogenotrophic methanogens, possibly linked to the colonization of organic-rich environments (including the animal gut) where both methyl compounds and hydrogen are abundant.

13.
PLoS Genet ; 16(12): e1009246, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315869

RESUMO

How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development.


Assuntos
Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Mutação , Domínios Proteicos , Esporos Bacterianos/ultraestrutura
14.
Nat Ecol Evol ; 4(12): 1661-1672, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077930

RESUMO

The transition between cell envelopes with one membrane (Gram-positive or monoderm) and those with two membranes (Gram-negative or diderm) is a fundamental open question in the evolution of Bacteria. Evidence of the presence of two independent diderm lineages, the Halanaerobiales and the Negativicutes, within the classically monoderm Firmicutes has blurred the monoderm/diderm divide and specifically anticipated that other members with an outer membrane (OM) might exist in this phylum. Here, by screening 1,639 genomes of uncultured Firmicutes for signatures of an OM, we highlight a third and deep branching diderm clade, the Limnochordia, strengthening the hypothesis of a diderm ancestor and the occurrence of independent transitions leading to the monoderm phenotype. Phyletic patterns of over 176,000 protein families constituting the Firmicutes pan-proteome identify those that strongly correlate with the diderm phenotype and suggest the existence of new potential players in OM biogenesis. In contrast, we find practically no largely conserved core of monoderms, a fact possibly linked to different ways of adapting to repeated OM losses. Phylogenetic analysis of a concatenation of main OM components totalling nearly 2,000 amino acid positions illustrates the common origin and vertical evolution of most diderm bacterial envelopes. Finally, mapping the presence/absence of OM markers onto the tree of Bacteria shows the overwhelming presence of diderm phyla and the non-monophyly of monoderm ones, pointing to an early origin of two-membraned cells and the derived nature of the Gram-positive envelope following multiple OM losses.


Assuntos
Firmicutes , Bactérias Gram-Positivas , Bactérias , Bactérias Gram-Negativas , Humanos , Filogenia
15.
Front Microbiol ; 11: 1891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013726

RESUMO

The microbial fluctuations along an increasing salinity gradient during two different salt production phases - initial salt harvesting (ISH) phase and peak salt harvesting (PSH) phase of Siridao solar salterns in Goa, India were examined through high-throughput sequencing of 16S rRNA genes on Illumina MiSeq platform. Elemental analysis of the brine samples showed high concentration of sodium (Na+) and chloride (Cl-) ions thereby indicating its thalassohaline nature. Comparison of relative abundance of sequences revealed that Archaea transited from sediment to brine while Bacteria transited from brine to sediment with increasing salinity. Frequency of Archaea was found to be significantly enriched even in low and moderate salinity sediments with their relative sequence abundance reaching as high as 85%. Euryarchaeota was found to be the dominant archaeal phylum containing 19 and 17 genera in sediments and brine, respectively. Phylotypes belonging to Halorubrum, Haloarcula, Halorhabdus, and Haloplanus were common in both sediments and brine. Occurence of Halobacterium and Natronomonas were exclusive to sediments while Halonotius was exclusive to brine. Among sediments, relative sequence frequency of Halorubrum, and Halorhabdus decreased while Haloarcula, Haloplanus, and Natronomonas increased with increasing salinity. Similarly, the relative abundance of Haloarcula and Halorubrum increased with increasing salinity in brine. Sediments and brine samples harbored about 20 and 17 bacterial phyla, respectively. Bacteroidetes, Proteobacteria, and Chloroflexi were the common bacterial phyla in both sediments and brine while Firmicutes were dominant albeit in sediments alone. Further, Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria were observed to be the abundant class within the Proteobacteria. Among the bacterial genera, phylotypes belonging to Rubricoccus and Halomonas were widely detected in both brine and sediment while Thioalkalispira, Desulfovermiculus, and Marinobacter were selectively present in sediments. This study suggests that Bacteria are more susceptible to salinity fluctuations than Archaea, with many bacterial genera being compartment and phase-specific. Our study further indicated that Archaea rather than Bacteria could withstand the wide salinity fluctuation and attain a stable community structure within a short time-frame.

16.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817093

RESUMO

The Negativicutes are a clade of the Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicutes, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas the adhesion and biofilm capacities of V. parvula are expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters, typically found in diderm bacteria, are the main determinants of V. parvula autoaggregation and biofilm formation and compete with each other for binding either to cells or to surfaces, with strong consequences for V. parvula biofilm formation capacity. The identified trimeric autotransporters have an original structure compared to classical autotransporters identified in Proteobacteria, with an additional C-terminal domain. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments.IMPORTANCEVeillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Sistemas de Secreção Tipo V , Veillonella/fisiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
17.
Mol Microbiol ; 113(3): 659-671, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31975449

RESUMO

How, when and why the transition between cell envelopes with one membrane (Gram-positives or monoderms) and two (Gram-negative or diderms) occurred in Bacteria is a key unanswered question in evolutionary biology. Different hypotheses have been put forward, suggesting that either the monoderm or the diderm phenotype is ancestral. The existence of diderm members in the classically monoderm Firmicutes challenges the Gram-positive/Gram-negative divide and provides a great opportunity to tackle the issue. In this review, we present current knowledge on the diversity of bacterial cell envelopes, including these atypical Firmicutes. We discuss how phylogenomic analysis supports the hypothesis that the diderm cell envelope architecture is an ancestral character in the Firmicutes, and that the monoderm phenotype in this phylum arose multiple times independently by loss of the outer membrane. Given the overwhelming distribution of diderm phenotypes with respect to monoderm ones, this scenario likely extends to the ancestor of all bacteria. Finally, we discuss the recent development of genetic tools for Veillonella parvula, a diderm Firmicute member of the human microbiome, which indicates it as an emerging new experimental model to investigate fundamental aspects of the diderm/monoderm transition.


Assuntos
Membrana Celular/genética , Bactérias Gram-Negativas/ultraestrutura , Bactérias Gram-Positivas/ultraestrutura , Bactérias/genética , Bactérias/metabolismo , Evolução Biológica , Membrana Celular/ultraestrutura , Parede Celular/genética , Parede Celular/ultraestrutura , Evolução Molecular , Firmicutes/classificação , Firmicutes/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Lipopolissacarídeos , Filogenia
18.
J Genomics ; 7: 50-55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31588247

RESUMO

Actinobacteria from genus Frankia are able to form symbiotic associations with actinorhizal plants including alders. Among them, Sp+ strains are characterized by their ability to differentiate numerous sporangia inside host plant cells (unlike "Sp-" strains unable of in-planta sporulation). Here, we report the first genome sequences of three unisolated Sp+ strains: AgTrS, AiOr and AvVan obtained from Alnus glutinosa, A. incana and A. alnobetula (previously known as viridis), respectively (with genome completeness estimated at more than 98%). They represent new Frankia species based on Average Nucleotide Identity (ANI) calculations, and the smallest Alnus-infective Frankia genomes so far sequenced (~5 Mbp), with 5,178, 6,192 and 5,751 candidate protein-encoding genes for AgTrS, AiOr and AvVan, respectively.

19.
Environ Microbiol ; 21(8): 2809-2835, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30969462

RESUMO

Dickeya is a genus of phytopathogenic enterobacterales causing soft rot in a variety of plants (e.g. potato, chicory, maize). Among the species affiliated to this genus, Dickeya aquatica, described in 2014, remained particularly mysterious because it had no known host. Furthermore, while D. aquatica was proposed to represent a deep-branching species among Dickeya genus, its precise phylogenetic position remained elusive. Here, we report the complete genome sequence of the D. aquatica type strain 174/2. We demonstrate the affinity of D. aquatica strain 174/2 for acidic fruits such as tomato and cucumber and show that exposure of this bacterium to acidic pH induces twitching motility. An in-depth phylogenomic analysis of all available Dickeya proteomes pinpoints D. aquatica as the second deepest branching lineage within this genus and reclassifies two lineages that likely correspond to new genomospecies (gs.): Dickeya gs. poaceaephila (Dickeya sp NCPPB 569) and Dickeya gs. undicola (Dickeya sp 2B12), together with a new putative genus, tentatively named Prodigiosinella. Finally, from comparative analyses of Dickeya proteomes, we infer the complex evolutionary history of this genus, paving the way to study the adaptive patterns and processes of Dickeya to different environmental niches and hosts. In particular, we hypothesize that the lack of xylanases and xylose degradation pathways in D. aquatica could reflect adaptation to aquatic charophyte hosts which, in contrast to land plants, do not contain xyloglucans.


Assuntos
Evolução Biológica , Gammaproteobacteria/patogenicidade , Dickeya , Gammaproteobacteria/genética , Genoma Bacteriano , Filogenia , Virulência , Sequenciamento Completo do Genoma
20.
Res Microbiol ; 170(4-5): 202-213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31018159

RESUMO

Sporulation is a microbial adaptive strategy to resist inhospitable conditions for vegetative growth and to disperse to colonise more favourable environments. This microbial trait is widespread in Actinobacteria. Among them, Frankia strains are able to differentiate sporangia in pure culture, while others can sporulate even when in symbiosis with sporulation occurring within host cells. The molecular determinants controlling Frankia sporulation have not been yet described. In order to highlight, for the first time, the molecular players potentially involved in Frankia sporulation, we conducted (i) a comparison of protein contents between Frankia spores and hyphae and (ii) a comparative genomic analysis of Frankia proteomes with sporulating and non-sporulating Actinobacteria. Among the main results, glycogen-metabolism related proteins, as well as oxidative stress response and protease-like proteins were overdetected in hyphae, recalling lytic processes that allow Streptomyces cells to erect sporogenic hyphae. Several genes encoding transcriptional regulators, including GntR-like, appeared up-regulated in spores, as well as tyrosinase, suggesting their potential role in mature spore metabolism. Finally, our results highlighted new proteins potentially involved in Frankia sporulation, including a pyrophosphate-energized proton pump and YaaT, described as involved in the phosphorelay allowing sporulation in Bacillus subtilis, leading us to discuss the role of a phosphorelay in Frankia sporulation.


Assuntos
Proteínas de Bactérias/metabolismo , Frankia/genética , Frankia/fisiologia , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Monofenol Mono-Oxigenase/genética , Proteogenômica , Proteoma/genética , Proteoma/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA