Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 11(37): 13718-13728, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37767084

RESUMO

The increase in the world population has led to intensive food production systems that are generating increasing amounts of solid waste. In this work, the valorization of the most important waste generated during wine production, grape pomace, is evaluated. Eight processes are proposed to approach different types of valorization (production of energy and value-added products), from economic, environmental, and social points of view. The best process depends on the budget available, the production capacity, and the weight of each impact produced by the factory (economic, environmental, or social). For small (less than 0.1 kg/s) or very large (greater than 10 kg/s) capacities, the production of high-value-added products outperforms the other processes in all three impacts and in profitability. For intermediate capacities, combustion and gasification stand out as having the highest greenhouse emissions and intermediate economic benefits. Anaerobic digestion is remarkable for its low greenhouse gas emissions, while tannin production is the best-balanced process from both economic and environmental points of view. Pyrolysis is the worst process of all three impacts.

2.
Bioresour Technol ; 385: 129397, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37380036

RESUMO

Biomass can become the source for chemicals towards a sustainable production system. However, the challenges it presents such as the variety of species, their widespread and sparse availability, and the expensive transportation claims for an integrated approach to design the novel production system. Multiscale approaches have not been properly extended to biorefineryes design and deployment, due to the comprehensive experimental and modelling work they require. A systems perspective provides the systematic framework to analyze the availability and composition of raw materials across regions, how that affects process design, the portfolio of products that can be obtained by evaluating the strong link between the biomass features and the process design. The use of lignocellulosic materials requires for a multidisciplinary work, that must lead to new process engineers with technical competences in biology, biotechnology but also process engineering, mathematics, computer science and social sciences towards a sustainable process/chemical industry.


Assuntos
Biotecnologia , Lignina , Lignina/química , Biomassa , Indústria Química , Biocombustíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA