RESUMO
BACKGROUND: We previously developed an automated total intravenous anesthesia control system that uses new closed-loop system algorithms to administer propofol, remifentanil, and rocuronium based on the bispectral index and train-of-four data. We recently improved this automated control system by adding a safety mechanism and using a modified monitoring device. METHODS: Patients scheduled for elective surgery were randomly assigned to closed-loop feedback control (automatic group) or the manual administration of propofol, remifentanil, and rocuronium (manual group). The proportion of time during which the proper management of three-agent anesthesia was maintained during surgery was determined as the primary endpoint. RESULTS: The proportion of time during which the three components of sedation, analgesia, and muscle relaxation were adequately controlled was 87.21 ± 12.79% in the automatic group, which was non-inferior to the proportion of 65.19 ± 20.16% in the manual group (p < 0.001). Adverse events during the operative or postoperative observation periods were significantly less frequent in the automatic group (54 patients, 90.0%) than in the manual group (60 patients, 100.0%; p = 0.027). CONCLUSION: Our three-agent automated control system, which features an improved muscle relaxation monitor and safety mechanism added to the basic control algorithms, maintained sedation, analgesia, and muscle relaxation appropriately in a manner non-inferior to anesthesiologists without compromising safety.
RESUMO
BACKGROUND: Postoperative atrial fibrillation (POAF) increases postoperative morbidity, mortality, and length of hospital stay. Propofol is reported to modulate atrial electrophysiology and the cardiac autonomic nervous system. Therefore, we retrospectively examined whether propofol suppresses POAF in patients undergoing video-assisted thoracoscopic surgery (VATS) compared to desflurane. METHODS: We retrospectively recruited adult patients who underwent VATS during the period from January 2011 to May 2018 in an academic university hospital. Between continuous propofol and desflurane administration during anesthetic maintenance, we investigated the incidence of new-onset POAF (within 48 hours after surgery) before and after propensity score matching. RESULTS: Of the 482 patients, 344 received propofol, and 138 received desflurane during anesthetic maintenance. The incidence of POAF in the propofol group was less than that in the desflurane group (4 [1.2%] vs. 8 patients [5.8%], odds ratio [OR]; 0.161, 95% confidence interval (CI), 0.040-0.653, p = 0.011) in the present study population. After adjustment for propensity score matching (n = 254, n = 127 each group), the incidence of POAF was still less in propofol group than desflurane group (1 [0.8%] vs. 8 patients [6.3%], OR; 0.068, 95% CI: 0.007-0.626, p = 0.018). CONCLUSIONS: These retrospective data suggest propofol anesthesia significantly inhibits POAF compared to desflurane anesthesia in patients undergoing VATS. Further prospective studies are needed to elucidate the mechanism of propofol on the inhibition of POAF.