Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Total Environ ; 917: 170197, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38253092

RESUMO

Volatile organic compounds (VOCs) have been suspected to cause building-related symptoms (BRSs). Although some studies investigated the association between BRSs and VOCs in indoor air, those results were inconsistent. This study investigated the contamination status of VOCs in the indoor air of 154 houses in Japan. Additionally, these samples were grouped by hierarchical clustering analysis based on the VOC composition, and the relationship between a VOC cluster and the BRSs was investigated. The median concentration of the sum of VOCs (ΣVOCs) was 140 µg m-3 (range: 18-3500 µg m-3). The levels of acetaldehyde in four samples and p-dichlorobenzene in one sample exceeded the guideline value. As a result of the hierarchical clustering analysis, the samples in this study were divided into six characteristic clusters based on the VOC composition. The ΣVOCs in cluster 1 were significantly lower than those in other clusters. In cluster 2, acyclic and aromatic hydrocarbons were dominant. Cluster 3 had a relatively high proportion of limonene. In cluster 4, the concentrations and composition ratios of α-pinene were higher than those of other clusters. In cluster 5, p-dichlorobenzene accounted for 42 %-72 % of the total VOCs. Cluster 6 had a relatively high proportion of decamethyl cyclopentasiloxane. This clustering likely depended on the construction of houses and lifestyles. As a result of logistic regression analysis, cluster 5 was associated with the cough symptoms of the BRSs. The results of the present study suggest that investigating the association between VOCs and BRSs is necessary to consider not only total concentrations such as TVOC and ΣVOCs but also VOC composition.

2.
PLoS One ; 18(1): e0279757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36696431

RESUMO

The indoor environment, particularly indoor air quality (IAQ), is significantly associated with building-related symptoms (BRSs) in humans. In our previous studies, we demonstrated a significant relationship between BRSs and indoor chemical concentrations. In Japan, the Ministry of Health, Labor, and Welfare (MHLW) guideline recommends an air quality target of 13 volatile organic compounds (VOCs) and a provisional target of 400 µg/m3 for total VOCs (TVOC). The objective of this study was to determine the relationship between TVOC levels and the risk of BRSs using the Japanese provisional target TVOC level of 400 µg/m3. The relationship between odor intensity and BRSs while the TVOC levels were under 400 µg/m3 was also examined. The study was conducted in a laboratory house (LH) on the campus of Chiba University from 2017-2019. The study included 149 participants who spent 60 minutes in the LH. The participants were asked to evaluate the IAQ of the LH. A significant relationship between the risk of BRSs and the provisional target TVOC level was observed (odds ratio: 2.94, 95% confidence interval: 1.18-7.35). Furthermore, a significant relationship between odor intensity and risk of BRSs in spaces with TVOC levels less than 400 µg/m3 was detected (odds ratio: 6.06, 95% confidence interval: 1.21-30.44). In conclusion, the risk of BRSs is significantly lower in spaces with low TVOC levels and low odor intensity. Reducing the concentration of airborne chemicals and odor intensity may improve IAQ and prevent BRSs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Humanos , Monitoramento Ambiental , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Compostos Orgânicos Voláteis/efeitos adversos , Compostos Orgânicos Voláteis/análise , Universidades , Fatores de Risco , Poluentes Atmosféricos/análise
3.
Animals (Basel) ; 12(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552442

RESUMO

In this study, we analyzed serum samples of pet cats from Thailand and estimated the contribution to organohalogen compounds (OHCs) exposure through cat food and house dust intake. BDE-209 was predominant in cat sera and accounted for 76% of all polybrominated diphenyl ethers (PBDEs). Decabromodiphenyl ether (BDE-209) is a major contaminant in dry cat food and house dust, which has been estimated to be a source of exposure for Thai pet cats. BDE-209 is a major contaminant of OHCs in dry cat food and house dust, which was estimated to be a source of exposure for Thai pet cats. On the other hand, the level of contamination by PCBs was lower than in other countries. Analysis of pet foods suggested that BDE-209 in pet cat serum was attributable to the consumption of dry cat food. On the other hand, house dust also contained high concentrations of BDE-209. Thus, high levels of BDE-209 in pet cat sera can be attributed to the consumption of dry cat food and house dust. These results suggest that pet cats are routinely exposed to non-negligible levels of OHCs.

4.
J Chromatogr A ; 1661: 462686, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34861578

RESUMO

Thyroid hormones (THs) play a critical role in the regulation of biological processes, such as growth, metabolism, and development, in various animal species. Prohormone L-thyroxine (T4) is secreted from the thyroid gland and carried to peripheral tissues. T4 is then biotransformed to several metabolites which play different roles, mainly by iodothyronine deiodinases. Determination of deiodinated TH metabolites in key organs such as liver and brain would help to understand tissue-specific TH metabolism and homeostasis. In this study, we thus developed a highly sensitive method for the determination of six THs [T4, 3,5,3'-triodo-L-thyronine (T3), 3,3',5'-triiodo-L-thyronine (rT3), 3,5-diiodo-l-thyronine (3,5-T2), 3,3'-diiodo-l-thyronine (3,3'-T2), and 3-iodo-l-thyronine (3-T1)] in the brain and liver by using stored dog samples. The analytical method consisted of ultrasonic-assisted extraction in acetone acidified with formic acid, cleanup with a EVOLUTE® EXPRESS CX cartridge (reversed-phase combined with strong cation-exchange cartridge), and quantification with liquid chromatography-tandem mass spectrometry. Acceptable accuracy (internal standard-corrected recovery: 80%-120%) and intra- and inter-day precision (coefficient of variation: <6% and <15%, respectively) (n = 3/ batch, three days) were obtained for both brain and liver samples. In addition, low method detection limits were achieved for both brain (0.013-0.12 ng g-1) and liver (0.030-0.78 ng g-1), which resulted in the quantitation of not only T4, T3, and rT3, but also 3,3'-T2 in both dog brain and liver samples. The developed method was successfully applied to the analysis of THs in the brain and liver of dogs (Canis lupus familiaris) which were exposed to polychlorinated biphenyls (PCBs). As a result, concentration ratios of rT3/T4 and 3,3'-T2/T3 in the PCB-exposed dogs were significantly higher than those in the control groups, suggesting the enhanced inner (tyrosyl)-ring deiodination (5-deiodination) by PCB exposure. The analytical method developed in the present study enables comprehensive evaluation of alterations in peripheral TH metabolism which are caused by exposure to environmental pollutants.


Assuntos
Espectrometria de Massas em Tandem , Hormônios Tireóideos , Animais , Encéfalo , Cromatografia Líquida , Cães , Fígado , Tiroxina , Tri-Iodotironina
5.
Artigo em Inglês | MEDLINE | ID: mdl-34639547

RESUMO

The relationship between chemical concentrations in indoor air and the human sense of comfort and relaxation have been reported. We investigated the effect of the sum of volatile organic compounds (ΣVOCs; sum of 79 VOCs) on the level of relaxation in two laboratory houses with almost identical interior and exterior appearances. The electroencephalogram (EEG) was monitored to evaluate the degree of personal relaxation objectively. The experiments were conducted in laboratory houses (LH) A and B with lower and higher levels of ΣVOCs, respectively. A total of 168 healthy volunteers participated, who each performed the task for 20 min, followed by a 10-min break, and EEG was measured during the break. Simultaneously as subjective evaluations, the participants were asked to fill a questionnaire regarding the intensity of odor and preference for the air quality in each LH. The subjective evaluation showed a significant association between ΣVOCs and participants' relaxation (OR: 2.86, 95%CI: 1.24-6.61), and the objective evaluation indicated that the participants were more relaxed in the LH with lower levels of ΣVOCs than that with higher levels (OR: 3.03, 95%CI: 1.23-7.50). Therefore, the reduction of ΣVOCs and odors in indoor air would have an effect, which is the promotion of relaxation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Laboratórios , Compostos Orgânicos Voláteis/análise
6.
Sci Total Environ ; 750: 141635, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882497

RESUMO

It is well known that the indoor environment, particularly indoor air quality (IAQ), has significant effects on building-related symptoms (BRSs) in humans, such as irritation of mucosal membranes, headaches, and allergies, such as asthma and atopic dermatitis. In 2017, Chiba University launched the "Chemiless Town Project Phase 3" to investigate the relationship between IAQ and human health. Two laboratory houses (LHs) were built on a university campus in which the interiors and exteriors were similar, but the levels of indoor air volatile organic compounds (VOCs) were different. A total of 141 participants evaluated IAQ using their sensory perception. There was a significant relationship between differences in VOC levels and BRSs occurrence (OR: 6.89, 95% CI: 1.40-33.98). It was suggested that people with a medical history of allergies (OR: 5.73, 95% CI: 1.12-29.32) and those with a high sensitivity to chemicals (OR: 8.82, 95% CI: 1.16-67.16) tended to experience BRSs. Thus, when buildings are constructed, people with a history of allergies or with a sensitivity to chemicals may be at high risk to BRSs, and it is important to pay attention to IAQ to prevent BRSs.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Humanos , Laboratórios , Compostos Orgânicos Voláteis/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-32188069

RESUMO

Herein, the concentrations of formic acid, acetic acid, and ammonia in samples of indoor air for 47 new houses were measured two weeks after completion. The houses were fabricated with light-gauge steel structures. The measurements were performed in living rooms and bedrooms without furniture and outdoors. Air samples were analyzed using ion chromatography. The mean values were 28 (living room), 30 (bedroom), and 20 µg m-3 (outdoor air) for formic acid; 166 (living room), 151 (bedroom), and 51 µg m-3 (outdoor air) for acetic acid; and 73 (living room), 76 (bedroom), and 21 µg m-3 (outdoor air) for ammonia. The total values of the three substances accounted for 39.4-40.7% of the sum of chemical compound values. The analyzed compounds were indicated by two principal components (PC), PC1 (30.1%) and PC2 (9%), with 39.1% total variance. Formic acid, acetic acid, and ammonia were positively aligned with PC1 and negatively aligned with PC2. Factors such as room temperature, aldehydes, and phthalates were positively aligned with PC1 and negatively aligned with PC2. Furthermore, concentrations of formic acid, acetic acid, and ammonia were significantly and positively correlated with room temperature (p < 0.05).


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Amônia , Ácido Acético , Monitoramento Ambiental , Formiatos , Habitação
8.
Sci Total Environ ; 688: 1172-1183, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31726548

RESUMO

Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) might disrupt thyroid function. However, there is no clear evidence of PCB exposure disrupting thyroid hormone (TH) homeostasis in dogs and cats. The present study conducted in vivo experiments to evaluate the effects of a mixture of 12 PCB congeners (CB18, 28, 70, 77, 99, 101, 118, 138, 153, 180, 187 and 202, each congener 0.5 mg/kg BW, i.p. administration) on serum TH levels in male dogs (Canis lupus familiaris) and male cats (Felis silvestris catus). In PCB-exposed dogs, the time courses of higher-chlorinated PCBs and L-thyroxine (T4)-like OH-PCBs (4-OH-CB107 and 4-OH-CB202) concentrations were unchanged or tended to increase, whereas those of lower-chlorinated PCBs and OH-PCBs tended to decrease after 24 h. In PCB-exposed cats, concentrations of PCBs increased until 6 h and then remained unchanged. The levels of lower-chlorinated OH-PCBs including 4'-OH-CB18 increased until 96 h and then decreased. In PCB-exposed dogs, free T4 concentrations were higher than those in the control group at 48 and 96 h after PCB administration and positively correlated with the levels of T4-like OH-PCBs, suggesting competitive binding of T4 and T4-like OH-PCBs to a TH transporter, transthyretin. Serum levels of total T4 and total 3,3',5-triiodo-L-thyronine (T3) in PCB-exposed dogs were lower than in the control group at 24 and 48 h and negatively correlated with PCB concentrations, implying that PCB exposure enhanced TH excretion by increasing TH uptake and TH conjugation enzyme activities in the dog liver. In contrast, no obvious changes in TH levels were observed in PCB-exposed cats. This could be explained by the lower levels of T4-like OH-PCBs and lower hepatic conjugation enzyme activities in cats compared with dogs. Different effects on serum TH levels in PCB-exposed dogs and cats are likely to be attributable to species-specific PCB and TH metabolism.


Assuntos
Poluentes Ambientais/metabolismo , Bifenilos Policlorados/metabolismo , Hormônios Tireóideos/sangue , Animais , Gatos , Cães , Poluentes Ambientais/toxicidade , Feminino , Masculino , Bifenilos Policlorados/toxicidade , Tiroxina/sangue
9.
Toxicol Appl Pharmacol ; 377: 114620, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31195005

RESUMO

Canis lupus familiaris (domestic dog) possess a high capacity to metabolize higher-chlorinated polychlorinated biphenyls (PCBs) to thyroid hormone (TH)-like hydroxylated PCB metabolites (OH-PCBs). As a result, the brain could be at high risk of toxicity caused by OH-PCBs. To evaluate the effect of OH-PCBs on dog brain, we analyzed OH-PCB levels in the brain and the metabolome of the frontal cortex following exposure to a mixture of PCBs (CB18, 28, 70, 77, 99, 101, 118, 138, 153, 180, 187, and 202). 4-OH-CB202 and 4-OH-CB107 were major OH-PCBs in the brain of PCB-exposed dogs. These OH-PCBs were associated with metabolites involved in urea cycle, proline-related compounds, and purine, pyrimidine, glutathione, and amino-acid metabolism in dog brain. Moreover, adenosine triphosphate levels in the PCBs exposure group were significantly lower than in the control group. These results suggest that OH-PCB exposure is associated with a disruption in TH homeostasis, generation of reactive oxygen species, and/or disruption of oxidative phosphorylation (OXPHOS) in brain cells. Among them, OXPHOS disturbance could be associated with both disruptions in cellular amino-acid metabolism and urea cycle. Therefore, an OXPHOS activity assay was performed to evaluate the disruption of OXPHOS by OH-PCBs. The results indicated that 4-OH-CB107 inhibits the function of Complexes III, IV, and V of the electron transport chain, suggesting that 4-OH-CB107 inhibit these complexes in OXPHOS. The neurotoxic effects of PCB exposure may be mediated through mitochondrial toxicity of OH-PCBs in the brain.


Assuntos
Química Encefálica/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Metaboloma , Fosforilação Oxidativa/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Cães , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Hidroxilação , Masculino , Neurotoxinas/toxicidade , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Espécies Reativas de Oxigênio , Hormônios Tireóideos/metabolismo , Ureia/metabolismo
10.
Toxicol Sci ; 165(1): 118-130, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788408

RESUMO

Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) have been detected in tissues of both wild animals and humans. Several previous studies have suggested adverse effects of OH-PCBs on the endocrine and nervous systems in mammals. However, there have been no studies on transcriptome analysis of the effects of OH-PCBs, and thus, the whole picture and mechanisms underlying the adverse effects induced by OH-PCBs are still poorly understood. We therefore investigated the mRNA expression profile in the liver of adult male Wistar rats treated with 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) to explore the genes responsive to OH-PCBs and to understand the potential effects of the chemical. Next-generation RNA sequencing analysis revealed changes in the expression of genes involved in the circadian rhythm and fatty acid metabolism, such as nuclear receptor subfamily 1, group D, member 1, aryl hydrocarbon receptor nuclear translocator-like protein 1, cryptochrome circadian clock 1, and enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase, in 4-OH-CB107-treated rats. In addition, biochemical analysis of the plasma revealed a dose-dependent increase in the leucine aminopeptidase, indicating the onset of liver damage. These results suggest that OH-PCB exposure may induce liver injury as well as disrupt the circadian rhythm and peroxisome proliferator-activated receptor-related fatty acid metabolism.


Assuntos
Transtornos Cronobiológicos/induzido quimicamente , Poluentes Ambientais/toxicidade , Ácidos Graxos/metabolismo , Fígado/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Transtornos Cronobiológicos/genética , Transtornos Cronobiológicos/metabolismo , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Leucil Aminopeptidase/sangue , Fígado/metabolismo , Ratos , Ratos Wistar
11.
J Chromatogr A ; 1539: 30-40, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29395158

RESUMO

Thyroid hormones (THs), which mainly consist of 3, 3', 5-triiodo-l-thyronine (T3) and L-thyroxine (T4), play a critical role in regulating biological processes such as growth and metabolism in various animal species. Thus, accurate measurement of T3 and T4, especially physiologically active free (protein-unbound) forms, in serum/plasma is needed for the evaluation of TH homeostasis. However, such high-precision determination of free THs is lacking for non-human species. The present study aimed to develop a highly sensitive and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of six free THs in serum/plasma, which is applicable to not only humans but also non-human species. Two different physical separation steps, ultrafiltration (UF) and equilibrium dialysis (ED), were examined to obtain the free TH fraction. Several experimental conditions were carefully optimized and validated for UF or ED using the commercially available bovine serum. As a result, UF at 1100 × g and 37 °C for 30 min with a 30 kDa ultrafiltration device (Centrifree YM-30, Millipore) yielded excellent precision (CV: <10%). The optimized ED step also yielded high precision (CV: <10%) and the measurement values were approximately equal to those of UF, but at least 16 h were required to reach equilibrium. Thus, UF combined with LC-MS/MS was finally chosen, in terms of the time needed for the measurement. Acceptable accuracy (recovery: 70%-110%) and intra- and inter-day precision (CV: <10% and <12%, respectively) were obtained, when triplicate analyses in three different days were conducted using the bovine serum. The developed analytical method was successfully applied to the determination of free THs in serum/plasma samples of humans, cats, and dogs. Furthermore, comparison with free T4 concentrations measured by a common immunoassay method evidently indicated that the ultrafiltration-LC-MS/MS method developed in this study can increase the specificity and accuracy of TH measurement.


Assuntos
Análise Química do Sangue/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Hormônios Tireóideos/sangue , Ultrafiltração , Animais , Gatos , Bovinos , Cães , Humanos , Imunoensaio , Reprodutibilidade dos Testes , Soro/química
12.
Environ Sci Technol ; 51(10): 5811-5819, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28440655

RESUMO

The adverse effects of elevated polybrominated diphenyl ether (PBDE) levels, reported in the blood of domestic dogs and cats, are considered to be of great concern. However, the tissue distribution of PBDEs and their derivatives in these animals is poorly understood. This study determined the concentrations and profiles of PBDEs, hydroxylated PBDEs (OH-PBDEs), methoxylated PBDEs (MeO-PBDEs), and 2,4,6-tribromophenol (2,4,6-tri-BPh) in the blood, livers, bile, and brains of dogs and cats in Japan. Higher tissue concentrations of PBDEs were found in cats, with the dominant congener being BDE209. BDE207 was also predominant in cat tissues, indicating that BDE207 was formed via BDE209 debromination. BDE47 was the dominant congener in dog bile, implying a species-specific excretory capacity of the liver. OH-PBDE and MeO-PBDE concentrations were several orders of magnitude higher in cat tissues, with the dominant congener being 6OH-BDE47, possibly owing to their intake of naturally occurring MeO-PBDEs in food, MeO-PBDE demethylation in the liver, and lack of UDP-glucuronosyltransferase, UGT1A6. Relatively high concentrations of BDE209, BDE207, 6OH-BDE47, 2'MeO-BDE68, and 2,4,6-tri-BPh were found in cat brains, suggesting a passage through the blood-brain barrier. Thus, cats in Japan might be at a high risk from PBDEs and their derivatives, particularly BDE209 and 6OH-BDE47.


Assuntos
Poluentes Ambientais/farmacocinética , Éteres Difenil Halogenados/farmacocinética , Animais , Gatos , Cães , Monitoramento Ambiental , Glucuronosiltransferase , Japão , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA