Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(38): 13363-13376, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732286

RESUMO

ICK (also known as CILK1) is a mitogen-activated protein kinase-like kinase localized at the ciliary tip. Its deficiency is known to result in the elongation of cilia and causes ciliopathies in humans. However, little is known about how ICK is transported to the ciliary tip. We here show that the C-terminal noncatalytic region of ICK interacts with the intraflagellar transport (IFT)-B complex of the IFT machinery and participates in its transport to the ciliary tip. Furthermore, total internal reflection fluorescence microscopy demonstrated that ICK undergoes bidirectional movement within cilia, similarly to IFT particles. Analysis of ICK knockout cells demonstrated that ICK deficiency severely impairs the retrograde trafficking of IFT particles and ciliary G protein-coupled receptors. In addition, we found that in ICK knockout cells, ciliary proteins are accumulated at the bulged ciliary tip, which appeared to be torn off and released into the environment as an extracellular vesicle. The exogenous expression of various ICK constructs in ICK knockout cells indicated that the IFT-dependent transport of ICK, as well as its kinase activity and phosphorylation at the canonical TDY motif, is essential for ICK function. Thus, we unequivocally show that ICK transported to the ciliary tip is required for retrograde ciliary protein trafficking and consequently for normal ciliary function.


Assuntos
Cílios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Cílios/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico
2.
J Biochem ; 165(3): 257-267, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476139

RESUMO

Cilia are organelles that serve as cellular antennae. Intraflagellar transport particles containing the IFT-A and IFT-B complexes mediate bidirectional trafficking of ciliary proteins. Particularly, in concert with the BBSome complex, IFT particles play an essential role in trafficking of ciliary G-protein-coupled receptors (GPCRs). Therefore, proteins interacting with the IFT components are potential regulators of ciliary protein trafficking. We here revealed that an uncharacterized protein, C11ORF74, interacts with the IFT-A complex via the IFT122 subunit and is accumulated at the distal tip in the absence of an IFT-A subunit IFT139, suggesting that at least a fraction of C11ORF74 molecules can be transported towards the ciliary tip by associating with the IFT-A complex, although its majority might be out of cilia at steady state. In C11ORF74-knockout (KO) cells, the BBSome components cannot enter cilia. However, trafficking of Smoothened or GPR161, both of which are ciliary GPCRs involved in Hedgehog signalling and undergo BBSome-dependent trafficking, was not affected in the absence of C11ORF74. In addition, C11orf74/B230118H07Rik- KO mice demonstrated no obvious anatomical abnormalities associated with ciliary dysfunctions. Given that C11ORF74 is conserved across vertebrates, but not found in other ciliated organisms, such as nematodes and Chlamydomonas, it might play limited roles involving cilia.


Assuntos
Cílios/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Proteínas do Citoesqueleto , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas/química
3.
Hum Mol Genet ; 27(3): 516-528, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29220510

RESUMO

The intraflagellar transport (IFT) machinery containing the IFT-A and IFT-B complexes mediates ciliary protein trafficking. Mutations in the genes encoding the six subunits of the IFT-A complex (IFT43, IFT121, IFT122, IFT139, IFT140, and IFT144) are known to cause skeletal ciliopathies, including cranioectodermal dysplasia (CED). As the IFT122 subunit connects the core and peripheral subcomplexes of the IFT-A complex, it is expected to play a pivotal role in the complex. Indeed, we here showed that knockout (KO) of the IFT122 gene in hTERT-RPE1 cells using the CRISPR/Cas9 system led to a severe ciliogenesis defect, whereas KO of other IFT-A genes had minor effects on ciliogenesis but impaired ciliary protein trafficking. Exogenous expression of not only wild-type IFT122 but also its CED-associated missense mutants, which fail to interact with other IFT-A subunits, rescued the ciliogenesis defect of IFT122-KO cells. However, IFT122-KO cells expressing CED-type IFT122 mutants showed defects in ciliary protein trafficking, such as ciliary entry of Smoothened in response to Hedgehog signaling activation. The trafficking defects partially resembled those observed in IFT144-KO cells, which demonstrate failed assembly of the functional IFT-A complex at the base of cilia. These observations make it likely that, although IFT122 is essential for ciliogenesis, CED-type missense mutations underlie a skeletal ciliopathy phenotype by perturbing ciliary protein trafficking with minor effects on ciliogenesis per se.


Assuntos
Ciliopatias/genética , Ciliopatias/metabolismo , Mutação/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA