Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Cell Dev Biol ; 12: 1365624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590777

RESUMO

The gut microbiome is implicated in the pathogenesis of polycystic ovary syndrome (PCOS), and prenatal androgen exposure is involved in the development of PCOS in later life. Our previous study of a mouse model of PCOS induced by prenatal dihydrotestosterone (DHT) exposure showed that the reproductive phenotype of PCOS appears from puberty, followed by the appearance of the metabolic phenotype after young adulthood, while changes in the gut microbiota was already apparent before puberty. To determine whether the prenatal or postnatal nurturing environment primarily contributes to these changes that characterize prenatally androgenized (PNA) offspring, we used a cross-fostering model to evaluate the effects of changes in the postnatal early-life environment of PNA offspring on the development of PCOS-like phenotypes and alterations in the gut microbiota in later life. Female PNA offspring fostered by normal dams (exposed to an abnormal prenatal environment only, fostered PNA) exhibited less marked PCOS-like phenotypes than PNA offspring, especially with respect to the metabolic phenotype. The gut microbiota of the fostered PNA offspring was similar to that of controls before adolescence, but differences between the fostered PNA and control groups became apparent after young adulthood. In conclusion, both prenatal androgen exposure and the postnatal early-life environment created by the DHT injection of mothers contribute to the development of PCOS-like phenotypes and the alterations in the gut microbiota that characterize PNA offspring. Thus, both the pre- and postnatal environments represent targets for the prevention of PCOS and the associated alteration in the gut microbiota in later life.

2.
Front Microbiol ; 15: 1351899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450161

RESUMO

Endometritis occurs frequently in humans and animals, which can negatively affect fertility and cause preterm parturition syndrome. Orally administered Clostridium butyricum, a butyrate-producing gram-positive anaerobe, exhibits anti-inflammatory effects. However, the precise mechanism by which Clostridium butyricum attenuates endometritis remains unclear. This in vivo study evaluated the anti-inflammatory effects of orally administered Clostridium butyricum on uterine tissues. In addition, we conducted uterine microbiome and lipid metabolome analyses to determine the underlying mechanisms. Female Balb/c mice were divided into the following four groups (n = 5-20): (1) mock group, (2) only operation group (mice only underwent operation to exposed uterine horns from the side), (3) control group (mice underwent the same operation with the operation group + perfusion of lipopolysaccharide solution from uterine horns), and (4) Clostridium butyricum administration group (mice underwent the same operation with the control group + oral Clostridium butyricum administration from days 0 to 9). Clostridium butyricum was administered via oral gavage. On day 10, we investigated protein expression, uterine microbiome, and lipid metabolism in uterine tissues. Consequently, orally administered Clostridium butyricum altered the uterine microbiome and induced proliferation of Lactobacillus and Limosilactobacillus species. The effects can contribute to show the anti-inflammatory effect through the interferon-ß upregulation in uterine tissues. Additionally, oral Clostridium butyricum administration resulted in the upregulations of some lipid metabolites, such as ω-3 polyunsaturated fatty acid resolvin D5, in uterine tissues, and resolvin D5 showed anti-inflammatory effects. However, the orally administered Clostridium butyricum induced anti-inflammatory effect was attenuated with the deletion of G protein-coupled receptor 120 and 15-lipooxgenase inhibition. In conclusion, Clostridium butyricum in the gut has anti-inflammatory effects on uterine tissues through alterations in the uterine microbiome and lipid metabolism. This study revealed a gut-uterus axis mechanism and provided insights into the treatment and prophylaxis of endometritis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38431763

RESUMO

In patients undergoing haematopoietic stem-cell transplantation (HSCT), the intestinal microbiota plays an important role in prognosis, transplant outcome, and complications such as graft-versus-host disease (GVHD). Our prior research revealed that patients undergoing HSCT substantially differed from healthy controls. In this retrospective study, we showed that administering Clostridium butyricum MIYAIRI 588 (CBM588) as a live biotherapeutic agent is associated with maintaining intestinal microbiota in the early post-HSCT period. Alpha diversity, which reflects species richness, declined considerably in patients who did not receive CBM588, whereas it remained consistent in those who received CBM588. In addition, ß-diversity analysis revealed that CBM588 did not alter the gut microbiota structure at 7-21 days post-HSCT. Patients who developed GVHD showed structural changes in their microbiota from the pre-transplant period, which was noticeable on day 14 before developing GVHD. Enterococcus was significantly prevalent in patients with GVHD after HSCT, and the population of Bacteroides was maintained from the pre-HSCT period through to the post-HSCT period. Patients who received CBM588 exhibited a contrasting trend, with lower relative abundances of both genera Enterococcus and Bacteroides. These results suggest that preoperative treatment with CBM588 could potentially be beneficial in maintaining intestinal microbiota balance.

4.
Gut Microbes ; 16(1): 2315631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385162

RESUMO

Immune checkpoint inhibitors (ICI) have been positioned as a standard of care for patients with advanced non-small-cell lung carcinomas (NSCLC). A pilot clinical trial has reflected optimistic association between supplementation with Clostridium butyricum MIYAIRI 588 (CBM588) and ICI efficacy in NSCLC. However, it remains to be established whether this biotherapeutic strain may be sufficient to heighten the immunogenicity of the tumor draining lymph nodes to overcome resistance to ICI. Herein, we report that supplementation with CBM588 led to an improved responsiveness to antibody targeting programmed cell death protein 1 (aPD-1). This was statistically associated with a significant decrease in α-diversity of gut microbiota from CBM588-treated mice upon PD-1 blockade. At the level of the tumor-draining lymph node, such combination of treatment significantly lowered the frequency of microbiota-modulated subset of regulatory T cells that express Retinoic Orphan Receptor gamma t (Rorγt+ Treg). Specifically, this strongly immunosuppressive was negatively correlated with the abundance of bacteria that belong to the family of Ruminococcaceae. Accordingly, the colonic expression of both indoleamine 2,3-Dioxygenase 1 (IDO-1) and interleukin-10 (IL-10) were heightened in mice with greater PD-1 blockade efficacy. The CBM588-induced ability to secrete Interleukin-10 of lamina propria mononuclear cells was heightened in tumor bearers when compared with cancer-free mice. Conversely, blockade of interleukin-10 signaling preferentially enhanced the capacity of CD8+ T cells to secrete Interferon gamma when being cocultured with CBM588-primed lamina propria mononuclear cells of tumor-bearing mice. Our results demonstrate that CBM588-centered intervention can adequately improve intestinal homeostasis and efficiently overcome resistance to PD-1 blockade in mice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Clostridium butyricum , Microbioma Gastrointestinal , Neoplasias Pulmonares , Animais , Camundongos , Linfócitos T CD8-Positivos , Clostridium butyricum/fisiologia , Interleucina-10/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores
5.
Anaerobe ; 84: 102784, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806638

RESUMO

INTRODUCTION: Bacteroides fragilis (B. fragilis) is considered to act in an anti-inflammatory manner on the intestinal tract. On the contrary, enterotoxigenic B. fragilis (ETBF), a subtype of B. fragilis, produces an enterotoxin (BFT; B. fragilis toxin), leading to asymptomatic chronic infections and colonic tumor formation. However, the impact of B. fragilis and ETBF on the clinical outcome of colorectal cancer (CRC) remains unclear. We aim to assess whether their presence affects the outcome in patients with CRC after curative resection. METHODS: We obtained 197 pairs of matched formalin-fixed paraffin-embedded samples from cancerous and adjacent non-cancerous tissues of patients with pathological stage (pstage) II and III CRC after curative resection. The presence of B. fragilis and ETBF were estimated using real-time polymerase chain reaction, and recurrence-free survival (RFS) and overall survival (OS) of the patients were analyzed. RESULTS: 16S rRNA for B. fragilis and bft DNA were detected in 120 (60.9%) and 12 (6.1%) of the 197 patients, respectively. B. fragilis-positive patients had better RFS than B. fragilis-negative patients, although that was not statistically significant. In subgroup analysis, better outcomes on RFS were observed in the presence of B. fragilis in pstage II and left-sided CRC. The association of B. fragilis positivity on OS was accentuated in the depth of T4 subgroup. No significant differences were observed in RFS and OS between ETBF and non-toxigenic B. fragilis. CONCLUSIONS: Our findings suggest that the presence of B. fragilis is associated with better outcomes in patients with pstage II and III CRC after curative resection.


Assuntos
Infecções Bacterianas , Infecções por Bacteroides , Neoplasias Colorretais , Humanos , Bacteroides fragilis/genética , Relevância Clínica , RNA Ribossômico 16S , Prognóstico , Infecções por Bacteroides/diagnóstico , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Infecções Bacterianas/complicações , Metaloendopeptidases/genética
6.
Front Cell Infect Microbiol ; 13: 1113401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201113

RESUMO

Introduction: Antifungal agents are not always efficient in resolving vulvovaginal candidiasis (VVC), a common genital infection caused by the overgrowth of Candida spp., including Candida albicans, or in preventing recurrent infections. Although lactobacilli (which are dominant microorganisms constituting healthy human vaginal microbiota) are important barriers against VVC, the Lactobacillus metabolite concentration needed to suppress VVC is unknown. Methods: We quantitatively evaluated Lactobacillus metabolite concentrations to determine their effect on Candida spp., including 27 vaginal strains of Lactobacillus crispatus, L. jensenii, L. gasseri, Lacticaseibacillus rhamnosus, and Limosilactobacillus vaginalis, with inhibitory abilities against biofilms of C. albicans clinical isolates. Results: Lactobacillus culture supernatants suppressed viable fungi by approximately 24%-92% relative to preformed C. albicans biofilms; however, their suppression differed among strains and not species. A moderate negative correlation was found between Lactobacillus lactate production and biofilm formation, but no correlation was observed between hydrogen peroxide production and biofilm formation. Both lactate and hydrogen peroxide were required to suppress C. albicans planktonic cell growth. Lactobacillus strains that significantly inhibited biofilm formation in culture supernatant also inhibited C. albicans adhesion to epithelial cells in an actual live bacterial adhesion competition test. Discussion: Healthy human microflora and their metabolites may play important roles in the development of new antifungal agent against C. albicans-induced VVC.


Assuntos
Candida albicans , Candidíase Vulvovaginal , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Lactobacillus , Candida , Antifúngicos/farmacologia , Células Epiteliais , Biofilmes
7.
Cell Rep ; 41(11): 111755, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516771

RESUMO

The precise mechanism by which butyrate-producing bacteria in the gut contribute to resistance to respiratory viral infections remains to be elucidated. Here, we describe a gut-lung axis mechanism and report that orally administered Clostridium butyricum (CB) enhances influenza virus infection resistance through upregulation of interferon (IFN)-λ in lung epithelial cells. Gut microbiome-induced ω-3 fatty acid 18-hydroxy eicosapentaenoic acid (18-HEPE) promotes IFN-λ production through the G protein-coupled receptor (GPR)120 and IFN regulatory factor (IRF)-1/-7 activations. CB promotes 18-HEPE production in the gut and enhances ω-3 fatty acid sensitivity in the lungs by promoting GPR120 expression. This study finds a gut-lung axis mechanism and provides insights into the treatments and prophylaxis for viral respiratory infections.


Assuntos
Clostridium butyricum , Ácidos Graxos Ômega-3 , Infecções por Orthomyxoviridae , Humanos , Clostridium butyricum/metabolismo , Interferon lambda , Regulação para Cima , Ácidos Graxos Ômega-3/metabolismo
8.
Access Microbiol ; 4(10): acmi000362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415735

RESUMO

The emerging Clostridioides difficile strain BI/NAP1/027 has been reported to be associated with more severe clinical symptoms and higher mortality rates, thought in part due to production of a novel binary toxin alongside conventional A and B toxins. However, recent studies suggest that this may not always be the case. Therefore, the purpose of this report was to investigate the correlation between clinical severity and microbiological characteristics of CDT-producing C. difficile isolates in Japan. Eight Japanese isolates of CDT producing C. difficile were investigated using genotyping, cytotoxic activity assays and toxin gene expression. Correlation with clinical severity was performed retrospectively using the patient record. Three of eight patients were assessed as having severe C. difficile infection (CDI). PCR ribotyping resolved six ribotypes including ribotype 027. No specific genes were identified determining severe compared with non-severe cases. Positive correlation of expression levels of tcdA, tcdB and cdtB were observed although these expression levels were not correlated with cytotoxicity. CDI severity index neither correlated with toxin gene expression level nor cytotoxicity. These data indicate that the possession of the CDT gene and toxin gene expression levels may not relate to C. difficile cytotoxicity or clinical severity.

9.
Microbes Environ ; 37(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155363

RESUMO

Animal gastrointestinal tracts are populated by highly diverse and complex microbiotas. The gut microbiota influences the bioavailability of dietary components and is closely associated with physiological processes in the host. Clostridium butyricum reportedly improves growth performance and affects the gut microbiota and immune functions in post-weaning piglets. However, the effects of C. butyricum on finishing pigs remain unclear. Therefore, we herein investigated the effects of C. butyricum MIYAIRI 588 (CBM588) on the gut microbiota of finishing pigs. 16S rRNA gene sequencing was performed using fecal samples and ileal, cecal, and colonic contents collected after slaughtering. The α-diversity of the small intestinal microbiota was lower than that of the large intestinal microbiota, whereas ß-diversity showed different patterns depending on sample collection sites. The administration of CBM588 did not significantly affect the α- or ß-diversity of the microbiotas of fecal and intestinal content samples regardless of the collection site. However, a linear discriminant ana-lysis Effect Size revealed that the relative abundance of Lactobacillaceae at the family level, Bifidobacterium at the order level, and Lactobacillus ruminis and Bifidobacterium pseudolongum at the species level were higher in the fecal samples and cecal and colonic contents of the treatment group than in those of the control group. Therefore, the administration of CBM588 to finishing pigs affected the composition of the gut microbiota and increased the abundance of bacteria that are beneficial to the host. These results provide important insights into the effects of probiotic administration on relatively stable gut microbial ecosystems.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Microbiota , Probióticos , Animais , Clostridium butyricum/genética , Probióticos/farmacologia , RNA Ribossômico 16S/genética , Suínos
10.
Oncoimmunology ; 11(1): 2081010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655708

RESUMO

Oral microbiota is associated with human diseases including cancer. Emerging evidence suggests that proton pump inhibitors (PPIs), which allow the oral microbiome to translocate into the gut, negatively influence the efficacy of immune checkpoint blockade (ICB) in cancer patients. However, currently there is no effective treatment that restores the decreased efficacy. To address this issue, we retrospectively evaluated 118 advanced or recurrent non-small cell lung cancer (NSCLC) patients treated with ICB and analyzed 80 fecal samples of patients with lung cancer by 16S metagenomic sequencing. Clostridium butyricum therapy using C. butyricum MIYAIRI 588 (CBM588), a live biotherapeutic bacterial strain, was shown to improve the ICB efficacy in lung cancer. Thus, we investigated how CBM588 affects the efficacy of ICB and the gut microbiota of lung cancer patients undergoing PPI treatment. We found that PPI treatment significantly decreased the efficacy of ICB in NSCLC patients, however, CBM588 significantly restored the diminished efficacy of ICB and improved survival. In addition, CBM588 prolonged overall survival in patients receiving PPIs and antibiotics together. The fecal analysis revealed that PPI users had higher abundance of harmful oral-related pathobionts and lower abundance of beneficial gut bacteria for immunotherapy. In contrast, patients who received CBM588 had lesser relative abundance of potentially harmful oral-related bacteria in the gut. Our research suggests that manipulating commensal microbiota by CBM588 may improve the therapeutic efficacy of ICB in cancer patients receiving PPIs, highlighting the potential of oral-related microbiota in the gut as a new therapeutic target for cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Clostridium butyricum , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Recidiva Local de Neoplasia , Inibidores da Bomba de Prótons/efeitos adversos , Estudos Retrospectivos
11.
DEN Open ; 2(1): e63, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35310733

RESUMO

Objectives: Diversion colitis (DC) is an inflammatory disorder caused by interruption of the fecal stream and subsequent nutrient deficiency from luminal bacteria. The utility of fecal microbiota transplantation (FMT) for DC was recently investigated; however, the precise pathogenesis of this condition remains unclear. This study aimed to evaluate the utility of autologous FMT in DC and to determine the related changes in the intestinal microbiota. Methods: Autologous FMT was performed to reestablish the intestinal microbiota in five patients (average age, 64.6 ± 8.3 years) with DC. They underwent double-ended colostomy. We assessed the diverted colon by endoscopy and evaluated the microbiota before and after FMT using the 16S rRNA gene sequencing method. Results: All five patients had mild inflammation (ulcerative colitis endoscopic index of severity [UCEIS] 2-3) in the diverted colon based on the colonoscopic findings. Three patients presented with symptoms, such as tenesmus, mucoid stool, and bloody stool. With FMT treatment, all patients achieved endoscopic remission (UCEIS score of 0 or 1) and symptomatic improvement. We observed a significantly decreased α-diversity in DC patients compared to healthy controls. The frequency of aerobic bacteria, such as Enterobacteriaceae, in the diverted colon decreased after autologous FMT. Conclusions: This study was the first to show that the microbiota in the diverted colon was significantly affected by autologous FMT. Since interruption of the fecal stream is central to the development of DC, FMT can be considered a promising treatment.

12.
Nat Med ; 28(4): 704-712, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35228755

RESUMO

Previous studies have suggested that the gut microbiome influences the response to checkpoint inhibitors (CPIs) in patients with cancer. CBM588 is a bifidogenic live bacterial product that we postulated could augment CPI response through modulation of the gut microbiome. In this open-label, single-center study (NCT03829111), 30 treatment-naive patients with metastatic renal cell carcinoma with clear cell and/or sarcomatoid histology and intermediate- or poor-risk disease were randomized 2:1 to receive nivolumab and ipilimumab with or without daily oral CBM588, respectively. Stool metagenomic sequencing was performed at multiple timepoints. The primary endpoint to compare the relative abundance of Bifidobacterium spp. at baseline and at 12 weeks was not met, and no significant differences in Bifidobacterium spp. or Shannon index associated with the addition of CBM588 to nivolumab-ipilimumab were detected. Secondary endpoints included response rate, progression-free survival (PFS) and toxicity. PFS was significantly longer in patients receiving nivolumab-ipilimumab with CBM588 than without (12.7 months versus 2.5 months, hazard ratio 0.15, 95% confidence interval 0.05-0.47, P = 0.001). Although not statistically significant, the response rate was also higher in patients receiving CBM588 (58% versus 20%, P = 0.06). No significant difference in toxicity was observed between the study arms. The data suggest that CBM588 appears to enhance the clinical outcome in patients with metastatic renal cell carcinoma treated with nivolumab-ipilimumab. Larger studies are warranted to confirm this clinical observation and elucidate the mechanism of action and the effects on microbiome and immune compartments.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Células Renais , Neoplasias Renais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Suplementos Nutricionais , Feminino , Humanos , Ipilimumab/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Masculino , Nivolumabe/uso terapêutico
13.
Vet Anim Sci ; 15: 100236, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146180

RESUMO

Tetracyclines (TCs) are widely used for livestock, and the high prevalence of TC-resistant Escherichia coli in livestock has become a serious concern worldwide. In Japan, the National Action Plan on Antimicrobial Resistance in 2016 aimed to reduce the TC resistance rate in E. coli derived from livestock. Flavophospholipol (FPL), used as a feed additive, has an inhibitory effect on the spread of plasmid-mediated antimicrobial resistance. The number of TC-resistant E. coli was determined in pigs administered TCs and/or FPL to clarify the effect of FPL on reducing the number of TC-resistant E. coli in pigs. TC-resistant E. coli and their plasmids were then analyzed. The pigs were divided into four groups: control, doxycycline (DOXY; a TC), FPL, and a DOXY-FPL combination. Their feces were collected from the nursing period to the day before being transported to the slaughterhouse, followed by estimation of TC-resistant E. coli (colony-forming units [CFU]/g). The number of TC-resistant E. coli increased with the use of DOXY, suggesting that DOXY administration provides a selective pressure for TC-resistant E. coli. Supplementation with FPL as a feed additive significantly suppressed the increase in the number of TC-resistant E. coli, especially during the DOXY administration period. Transfer and growth inhibition analyses were performed for TC-resistant isolates. FPL inhibited the conjugational transfer and growth of a few TC-resistant E. coli isolates. These results suggest that FPL is effective against the spread of TC-resistant E. coli.

14.
Biomedicines ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203691

RESUMO

Clostridium butyricum is a human commensal bacterium with beneficial effects including butyrate production, spore formation, increasing levels of beneficial bacteria, and inhibition of pathogenic bacteria. Owing to its preventive and ameliorative effects on gastrointestinal infections, C. butyricum MIYAIRI 588 (CBM 588) has been used as a probiotic in clinical and veterinary medicine for decades. This review summarizes the effects of C. butyricum, including CBM 588, on bacterial gastrointestinal infections. Further, the characteristics of the causative bacteria, examples of clinical and veterinary use, and mechanisms exploited in basic research are presented. C. butyricum is widely effective against Clostoridioides difficile, the causative pathogen of nosocomial infections; Helicobacter pylori, the causative pathogen of gastric cancer; and antibiotic-resistant Escherichia coli. Accordingly, its mechanism is gradually being elucidated. As C. butyricum is effective against gastrointestinal infections caused by antibiotics-induced dysbiosis, it can inhibit the transmission of antibiotic-resistant genes and maintain homeostasis of the gut microbiome. Altogether, C. butyricum is expected to be one of the antimicrobial-resistance (AMR) countermeasures for the One-health approach.

15.
Front Vet Sci ; 8: 736996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733902

RESUMO

Endometritis has a major impact on fertility in postpartum dairy cows. Since previous studies showed an association between reproductive microbiota and perinatal disease, we monitored both bovine uterine and vaginal microbiota in primiparous cows to elucidate the effect of early postpartum microbiota on endometritis. Uterine and vaginal samples were collected at time points from pre-calving to 35 days postpartum (DPP), and analyzed by 16S rRNA sequencing, combined with ancillary bacterial culture. A total of seven healthy cows and seven cows diagnosed with endometritis on 35 DPP were used in the current study. The uterine and vaginal microbiota showed a maximum of 20.1% shared amplicon sequence variants (ASVs) at linked time points. 16S rRNA based analysis and traditional culture methods revealed that Trueperella showed a higher abundance in both uterus and vagina of the endometritis group compared to the healthy group on 21 DPP (U-test p < 0.05). Differential abundance analysis of the uterine microbiota showed that Enterococcus and six bacterial genera including Bifidobacterium were unique to the healthy group on the day of calving (0 DPP) and 28 DPP, respectively. In contrast, Histophilus and Mogibacteriaceae were characteristic bacteria in the vagina pre-calving in cows that later developed endometritis, suggesting that these bacteria could be valuable to predict clinical outcomes. Comparing the abundances of bacterial genera in the uterine microbiota, a negative correlation was observed between Trueperella and several bacteria including Lactobacillus. These results suggest that building an environment where there is an increase in bacteria that are generally recognized as beneficial, such as Lactobacillus, may be one possible solution to reduce the abundance of Trueperella and control endometritis.

16.
J Transl Med ; 19(1): 462, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34781966

RESUMO

BACKGROUND: Despite the benefits of extracorporeal cardiopulmonary resuscitation (ECPR) in cohorts of selected patients with cardiac arrest (CA), extracorporeal membrane oxygenation (ECMO) includes an artificial oxygenation membrane and circuits that contact the circulating blood and induce excessive oxidative stress and inflammatory responses, resulting in coagulopathy and endothelial cell damage. There is currently no pharmacological treatment that has been proven to improve outcomes after CA/ECPR. We aimed to test the hypothesis that administration of hydrogen gas (H2) combined with ECPR could improve outcomes after CA/ECPR in rats. METHODS: Rats were subjected to 20 min of asphyxial CA and were resuscitated by ECPR. Mechanical ventilation (MV) was initiated at the beginning of ECPR. Animals were randomly assigned to the placebo or H2 gas treatment groups. The supplement gas was administered with O2 through the ECMO membrane and MV. Survival time, electroencephalography (EEG), brain functional status, and brain tissue oxygenation were measured. Changes in the plasma levels of syndecan-1 (a marker of endothelial damage), multiple cytokines, chemokines, and metabolites were also evaluated. RESULTS: The survival rate at 4 h was 77.8% (7 out of 9) in the H2 group and 22.2% (2 out of 9) in the placebo group. The Kaplan-Meier analysis showed that H2 significantly improved the 4 h-survival endpoint (log-rank P = 0.025 vs. placebo). All animals treated with H2 regained EEG activity, whereas no recovery was observed in animals treated with placebo. H2 therapy markedly improved intra-resuscitation brain tissue oxygenation and prevented an increase in central venous pressure after ECPR. H2 attenuated an increase in syndecan-1 levels and enhanced an increase in interleukin-10, vascular endothelial growth factor, and leptin levels after ECPR. Metabolomics analysis identified significant changes at 2 h after CA/ECPR between the two groups, particularly in D-glutamine and D-glutamate metabolism. CONCLUSIONS: H2 therapy improved mortality in highly lethal CA rats rescued by ECPR and helped recover brain electrical activity. The underlying mechanism might be linked to protective effects against endothelial damage. Further studies are warranted to elucidate the mechanisms responsible for the beneficial effects of H2 on ischemia-reperfusion injury in critically ill patients who require ECMO support.


Assuntos
Reanimação Cardiopulmonar , Oxigenação por Membrana Extracorpórea , Parada Cardíaca , Animais , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Humanos , Hidrogênio , Ratos , Fator A de Crescimento do Endotélio Vascular
17.
Biomedicines ; 9(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440269

RESUMO

The gut microbiome is closely related to gut metabolic functions, and the gut microbiome and host metabolic functions affect each other. Clostridium butyricum MIYAIRI 588 (CBM 588) upregulates protectin D1 production in host colon tissue following G protein-coupled receptor (GPR) 120 activation to protect gut epithelial cells under antibiotic-induced dysbiosis. However, how CBM 588 enhances polyunsaturated fatty acid (PUFA) metabolites remains unclear. Therefore, we focused on the metabolic function alterations of the gut microbiome after CBM 588 and protectin D1 administration to reveal the interaction between the host and gut microbiome through lipid metabolism during antibiotic-induced dysbiosis. Consequently, CBM 588 modified gut microbiome and increased the butyric acid and oleic acid content. These lipid metabolic modifications induced GPR activation, which is a trigger of ERK 1/2 signaling and directed differentiation of downstream immune cells in the host colon tissue. Moreover, endogenous protectin D1 modified the gut microbiome, similar to CBM 588. This is the first study to report that CBM 588 influences the interrelationship between colon tissue and the gut microbiome through lipid metabolism. These findings provide insights into the mechanisms of prevention and recovery from inflammation and the improvement of host metabolism by CBM 588.

18.
Sci Rep ; 11(1): 15007, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294848

RESUMO

Clostridioides difficile infection (CDI) represents the leading cause of nosocomial diarrhea worldwide and is associated with gut dysbiosis and intestinal damage. Clostridium butyricum MIYAIRI 588 (CBM 588) contributes significantly to reduce epithelial damage. However, the impacts of CBM 588 on antibacterial therapy for CDI are not clear. Here we show that CBM 588 enhanced the antibacterial activity of fidaxomicin against C. difficile and negatively modulated gut succinate levels to prevent C. difficile proliferation and downregulate tumor necrosis factor-α (TNF-α) producing macrophages in the colon lumina propria (cLP), resulting in a significant decrease in colon epithelial damage. Additionally, CBM 588 upregulated T cell-dependent pathogen specific immunoglobulin A (IgA) via interleukin (IL)-17A producing CD4+ cells and plasma B cells in the cLP, and Th17 cells in the cLP enhanced the gut epithelial barrier function. IL-17A and succinic acid modulations with CBM 588 enhance gut colonization resistance to C. difficile and protect the colon tissue from CDI.


Assuntos
Antibiose , Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Clostridium butyricum/fisiologia , Metabolismo Energético , Imunomodulação , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Microbioma Gastrointestinal , Imunoglobulina A/imunologia , Interleucina-17/biossíntese , Camundongos , Modelos Biológicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
Biosci Microbiota Food Health ; 40(3): 150-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285860

RESUMO

Sarcopenia causes functional disorders and decreases the quality of life. Thus, it has attracted substantial attention in the aging modern world. Dysbiosis of the intestinal microbiota is associated with sarcopenia; however, it remains unclear whether prebiotics change the microbiota composition and result in the subsequent recovery of muscle atrophy in elderly patients with sarcopenia. This study aimed to assess the effects of prebiotics in super-elderly patients with sarcopenia. We analyzed the effects of 1-kestose on the changes in the intestinal microbiota and body composition using a next-generation sequencer and a multi-frequency bioimpedance analysis device. The Bifidobacterium longum population was significantly increased in the intestine after 1-kestose administration. In addition, in all six patients after 12 weeks of 1-kestose administration, the skeletal muscle mass index was greater, and the body fat percentage was lower. This is the first study to show that administration of a prebiotic increased the population of B. longum in the intestinal microbiota and caused recovery of muscle atrophy in super-elderly patients with sarcopenia.

20.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805848

RESUMO

Lantibiotics are a type of bacteriocin produced by Gram-positive bacteria and have a wide spectrum of Gram-positive antimicrobial activity. In this study, we determined that Mutacin I/III and Smb (a dipeptide lantibiotic), which are mainly produced by the widespread cariogenic bacterium Streptococcus mutans, have strong antimicrobial activities against many of the Gram-positive bacteria which constitute the intestinal microbiota. These lantibiotics also demonstrate resistance to acid and temperature. Based on these features, we predicted that lantibiotics may be able to persist into the intestinal tract maintaining a strong antimicrobial activity, affecting the intestinal microbiota. Saliva and fecal samples from 69 subjects were collected to test this hypothesis and the presence of lantibiotics and the composition of the intestinal microbiota were examined. We demonstrate that subjects possessing lantibiotic-producing bacteria in their oral cavity exhibited a tendency of decreased species richness and have significantly reduced abundance of the phylum Firmicutes in their intestinal microbiota. Similar results were obtained in the fecal microbiota of mice fed with S. mutans culture supernatant containing the lantibiotic bacteriocin Mutacin I. These results showed that lantibiotic bacteriocins produced in the oral cavity perturb the intestinal microbiota and suggest that oral bacteria may be one of the causative factors of intestinal microbiota dysbiosis.


Assuntos
Bacteriocinas/farmacologia , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Boca/microbiologia , Animais , Anti-Infecciosos/farmacologia , Fezes/microbiologia , Feminino , Firmicutes , Camundongos , Camundongos Endogâmicos ICR , RNA Ribossômico 16S/metabolismo , Streptococcus mutans , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA