RESUMO
When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.
Assuntos
Ursidae , Animais , Carnivoridade , Ecossistema , Feminino , Humanos , Japão , Masculino , Estações do Ano , ÁrvoresRESUMO
The Terai-Duar savanna and grasslands, which once extended along most of the Himalayan foothills, now only remain in a number of protected areas. Within these localities, grassland burning is a major issue, but data on frequency and distribution of fires are limited. Here, we analysed the incidence of active fires, which only occur during the dry season (Nov.-Mar.), within a significant area of Terai grasslands: the Manas National Park (MNP), India. We obtained locations of 781 fires during the 2000-2008 dry seasons, from the Fire Information for Resource Management System (FIRMS) that delivers global MODIS hotspot/fire locations using remote sensing and GIS technologies. Annual number of fires rose significantly from around 20 at the start of the study period to over 90 after 2002, with most (85%) detected between December and January. Over half of the fires occurred in tall grasslands, but fire density was highest in wetland and riverine vegetation, dry at the time. Most burning took place near rivers, roads and the park boundary, suggesting anthropogenic origins. A kernel density map of all recorded fires indicated three heavily burnt areas in the MNP, all within the tall grasslands. Our study demonstrates, despite some technical caveats linked to fire detection technology, which is improving, that remote fire data can be a practical tool in understanding fire concentration and burning temporal patterns in highly vulnerable habitats, useful in guiding management.