Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem ; 175(1): 115-124, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37827526

RESUMO

A convenient method for the determination of plant sphingolipids (glycosylinositol phosphoceramide, GIPC; glucosylceramide, GluCer; phytoceramide 1-phosphate, PC1P and phytoceramide, PCer) was developed. This method includes the extraction of lipids using 1-butanol, alkali hydrolysis with methylamine and separation by TLC. The amounts of sphingolipids in the sample were determined based on the relative intensities of standard sphingolipids visualized by primulin/UV on TLC. Using this method, we found that almost all GIPCs were degraded in response to tissue homogenization in cruciferous plants (cabbage, broccoli and Arabidopsis thaliana). The decrease in GIPCs was compensated for by increases in PC1P and PCer, indicating that GIPC was degraded by hydrolysis at the D and C positions of GIPC, respectively. In carrot roots and leaves, most of GIPC degradation was compensated for by an increase in PCer. In rice roots, the decrease in GIPCs was not fully explained by the increases in PC1P and PCer, indicating that enzymes other than phospholipase C and D activities operated. As the visualization of lipids on TLC is useful for detecting the appearance or disappearance of lipids, this method will be available for the characterization of metabolism of sphingolipids in plants.


Assuntos
Arabidopsis , Brassica , Glicoesfingolipídeos/metabolismo , Esfingolipídeos/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo
2.
FEBS Lett ; 596(23): 3024-3036, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36266963

RESUMO

Glycosylinositol phosphoceramide (GIPC) is a major sphingolipid in the plasma membranes of plants. Previously, we found an enzyme activity that produces phytoceramide 1-phosphate (PC1P) by hydrolysis of the D position of GIPC in cabbage and named this activity as GIPC-phospholipase D (PLD). Here, we purified GIPC-PLD by sequential chromatography from radish roots. Peptide mass fingerprinting analysis revealed that the potential candidate for GIPC-PLD protein was nonspecific phospholipase C3 (NPC3), which has not been characterized as a PLD. The recombinant NPC3 protein obtained by heterologous expression system in Escherichia coli produced PC1P from GIPC and showed essentially the same enzymatic properties as those we characterized as GIPC-PLD in cabbage, radish and Arabidopsis thaliana. From these results, we conclude that NPC3 is one of the enzymes that degrade GIPC.


Assuntos
Arabidopsis , Brassica , Fosfolipase D , Raphanus , Fosfolipase D/genética , Fosfolipase D/química , Raphanus/metabolismo , Fosfolipases/metabolismo , Esfingolipídeos/metabolismo , Brassica/genética , Brassica/química , Arabidopsis/genética , Arabidopsis/metabolismo
3.
Lipids ; 40(2): 155-62, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15884763

RESUMO

Sciadonic acid (20:3, delta-5c,11 c,14c) is a polymethylene-interrupted PUFA (PMI-PUFA) that is present in conifer seeds and known to be incorporated into animal cells and to accumulate in membrane PI as a substitute for arachidonate. In this study, we investigated whether PI having sciadonate could serve as source of DAG that could activate protein kinase C (PKC). When Swiss 3T3 cells cultured with sciadonic acid were stimulated with 100 nM of bombesin, 1-stearoyl-2-sciadonoyl-glycerol (G) and 1-stearoyl-2-arachidonoyl-G were produced. The net increments of these two molecular species of DAG reflected the levels of the two molecular species in the PI in the cells. When cells cultured with juniperonic acid (20:4, delta-5c,11c,14c,17c) were stimulated, 1-stearoyl-2-juniperonoyl-G was produced in proportion to the level of this molecular species in PI in the cells. We also examined PKC activation by synthetic DAG using a partially purified PKC fraction from rat brain and found that both 1-stearoyl-2-sciadonoyl-G and 1-stearoyl-2-juniperonoyl-G could activate PKC comparably to 1 -stearoyl-2-arachidonoyl-G. These results indicate that 1-stearoyl-PI having these C20 PMI-PUFA residues can serve as sources of potential signaling molecules.


Assuntos
Ácidos Araquidônicos/farmacologia , Diglicerídeos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteína Quinase C/metabolismo , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Bombesina/farmacologia , Encéfalo/enzimologia , Diglicerídeos/biossíntese , Diglicerídeos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Masculino , Camundongos , Ratos , Transdução de Sinais , Células Swiss 3T3
4.
Eur J Biochem ; 270(7): 1466-73, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12654002

RESUMO

It is known that phosphatidylinositol (PtdIns) contains abundant arachidonate and is composed mainly of 1-stearoyl-2-arachidonoyl species in mammals. We investigated if this characteristic of PtdIns applies to the PtdIns from yellowtail (Seriola quinqueradiata), a marine fish. In common with phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and phosphatidylserine (PtdSer) from brain, heart, liver, spleen, kidney and ovary, the predominant polyunsaturated fatty acid was docosahexaenoic acid, and levels of arachidonic acid were less than 4.5% (PtdCho), 7.5% (PtdEtn) and 3.0% (PtdSer) in these tissues. In striking contrast, arachidonic acid made up 17.6%, 31.8%, 27.8%, 26.1%, 25.4% and 33.5% of the fatty acid composition of PtdIns from brain, heart, liver, spleen, kidney and ovary, respectively. The most abundant molecular species of PtdIns in all these tissues was 1-stearoyl-2-arachidonoyl. Assay of acyltransferase in liver microsomes of yellowtail showed that arachidonic acid was incorporated into PtdIns more effectively than docosahexaenoic acid and that the latter inhibited incorporation of arachidonic acid into PtdCho without inhibiting the utilization of arachidonic acid for PtdIns. This effect of docosahexaenoic acid was not observed in similar experiments using rat liver microsomes and is thought to contribute to the exclusive utilization of arachidonic acid for acylation to PtdIns in yellowtail. Inositolphospholipids and their hydrolysates are known to act as signaling molecules in cells. The conserved hydrophobic structure of PtdIns (the 1-stearoyl-2-arachidonoyl moiety) may have physiological significance not only in mammals but also in fish.


Assuntos
Ácido Araquidônico/metabolismo , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo , Acilação , Animais , Ácido Araquidônico/análise , Encéfalo/metabolismo , Química Encefálica , Ácidos Docosa-Hexaenoicos/análise , Ácidos Graxos/análise , Feminino , Peixes , Rim/química , Rim/metabolismo , Fígado/química , Fígado/metabolismo , Miocárdio/química , Miocárdio/metabolismo , Especificidade de Órgãos , Ovário/química , Ovário/metabolismo , Fosfatidilinositóis/química , Fosfolipídeos/química , Ratos , Baço/química , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA