Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Microbes Environ ; 39(5)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38811235

RESUMO

The extremely halophilic archaeon Haloarcula japonica accumulates the C50 carotenoid, bacterioruberin (BR). To reveal the BR biosynthetic pathway, unidentified phytoene desaturase candidates were functionally characterized in the present study. Two genes encoding the potential phytoene desaturases, c0507 and d1086, were found from the Ha. japonica genome sequence by a homology search using the Basic Local Align Search Tool. Disruption mutants of c0507 and d1086 and their complemented strains transformed with expression plasmids for c0507 and d1086 were subsequently constructed. High-performance liquid chromatography (HPLC) ana-lyses of carotenoids produced by these strains revealed that C0507 and D1086 were both bifunctional enzymes with the same activities as both phytoene desaturase (CrtI) and 3,4-desaturase (CrtD). C0507 and D1086 complemented each other during BR biosynthesis in Ha. japonica. This is the first study to identify two distinct enzymes with both CrtI and CrtD activities in an extremely halophilic archaeon.


Assuntos
Carotenoides , Haloarcula , Oxirredutases , Carotenoides/metabolismo , Haloarcula/genética , Haloarcula/enzimologia , Haloarcula/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Vias Biossintéticas/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Teste de Complementação Genética , Filogenia
2.
J Biol Chem ; 299(9): 105110, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517696

RESUMO

Marine animals display diverse vibrant colors, but the mechanisms underlying their specific coloration remain to be clarified. Blue coloration is known to be achieved through a bathochromic shift of the orange carotenoid astaxanthin (AXT) by the crustacean protein crustacyanin, but other examples have not yet been well investigated. Here, we identified an ependymin (EPD)-related water-soluble blue carotenoprotein responsible for the specific coloration of the marine blue sponge Haliclona sp. EPD was originally identified in the fish brain as a protein involved in memory consolidation and neuronal regeneration. The purified blue protein, designated as EPD-related blue carotenoprotein-1, was identified as a secreted glycoprotein. We show that it consists of a heterodimer that binds orange AXT and mytiloxanthin and exhibits a bathochromic shift. Our crystal structure analysis of the natively purified EPD-related blue carotenoprotein-1 revealed that these two carotenoids are specifically bound to the heterodimer interface, where the polyene chains are aligned in parallel to each other like in ß-crustacyanin, although the two proteins are evolutionary and structurally unrelated. Furthermore, using reconstitution assays, we found that incomplete bathochromic shifts occurred when the protein bound to only AXT or mytiloxanthin. Taken together, we identified an EPD in a basal metazoan as a blue protein that decorates the sponge body by binding specific structurally unrelated carotenoids.

3.
Nat Commun ; 14(1): 730, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792917

RESUMO

Prasiola crispa, an aerial green alga, forms layered colonies under the severe terrestrial conditions of Antarctica. Since only far-red light is available at a deep layer of the colony, P. crispa has evolved a molecular system for photosystem II (PSII) excitation using far-red light with uphill energy transfer. However, the molecular basis underlying this system remains elusive. Here, we purified a light-harvesting chlorophyll (Chl)-binding protein complex from P. crispa (Pc-frLHC) that excites PSII with far-red light and revealed its ring-shaped structure with undecameric 11-fold symmetry at 3.13 Šresolution. The primary structure suggests that Pc-frLHC evolved from LHCI rather than LHCII. The circular arrangement of the Pc-frLHC subunits is unique among eukaryote LHCs and forms unprecedented Chl pentamers at every subunit‒subunit interface near the excitation energy exit sites. The Chl pentamers probably contribute to far-red light absorption. Pc-frLHC's unique Chl arrangement likely promotes PSII excitation with entropy-driven uphill excitation energy transfer.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema I , Regiões Antárticas , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/metabolismo
4.
Commun Biol ; 5(1): 1197, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344631

RESUMO

Rhodopila globiformis is the most acidophilic of anaerobic purple phototrophs, growing optimally in culture at pH 5. Here we present a cryo-EM structure of the light-harvesting 1-reaction center (LH1-RC) complex from Rhodopila globiformis at 2.24 Å resolution. All purple bacterial cytochrome (Cyt, encoded by the gene pufC) subunit-associated RCs with known structures have their N-termini truncated. By contrast, the Rhodopila globiformis RC contains a full-length tetra-heme Cyt with its N-terminus embedded in the membrane forming an α-helix as the membrane anchor. Comparison of the N-terminal regions of the Cyt with PufX polypeptides widely distributed in Rhodobacter species reveals significant structural similarities, supporting a longstanding hypothesis that PufX is phylogenetically related to the N-terminus of the RC-bound Cyt subunit and that a common ancestor of phototrophic Proteobacteria contained a full-length tetra-heme Cyt subunit that evolved independently through partial deletions of its pufC gene. Eleven copies of a novel γ-like polypeptide were also identified in the bacteriochlorophyll a-containing Rhodopila globiformis LH1 complex; γ-polypeptides have previously been found only in the LH1 of bacteriochlorophyll b-containing species. These features are discussed in relation to their predicted functions of stabilizing the LH1 structure and regulating quinone transport under the warm acidic conditions.


Assuntos
Extremófilos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Fotossíntese , Proteobactérias/genética , Peptídeos/metabolismo , Heme/metabolismo
5.
J Nat Prod ; 85(10): 2266-2273, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36129462

RESUMO

Meiothermus ruber DSMZ 1279T was isolated from a hot spring in Kamchatka and was red in color. The major carotenoid present was reported to be 1'-(ß-d-glucopyranosyloxy)-3,4,3',4'-tetradehydro-1',2'-dihydro-ß,ψ-caroten-2-one after saponification (Burgess et al. J. Nat. Prod. 1999, 62, 859-863). In this study, we purified the major carotenoids in this species without saponification. We then reidentified the major carotenoids present using spectroscopic data, including electronic circular dichroism (ECD), 1H NMR, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), 13C NMR, heteronuclear single-quantum correlation spectroscopy (HSQC), heteronuclear multiple-bond correlation spectroscopy (HMBC), and MS, and enzymatic hydrolysis of fatty acid moieties and found deinoxanthin glucoside iso fatty acid esters. The bound fatty acids present included four iso types, and their composition differed from cellular lipids. Moreover, the previously identified carotenoid glucoside was a saponification artifact of deinoxanthin glucoside esters. Ketomyxocoxanthin glucoside esters and 1'-hydroxytorulene glucoside esters were also present. On the basis of the identification of carotenoids and the whole genome sequence of M. ruber, we propose a carotenoid biosynthetic pathway and note the corresponding genes.


Assuntos
Ésteres , Glucosídeos , Ésteres/química , Glucosídeos/metabolismo , Carotenoides/química , Ácidos Graxos/química
6.
Photosynth Res ; 154(1): 13-19, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35951151

RESUMO

Carotenoids (Cars) exhibit two functions in photosynthesis, light-harvesting and photoprotective functions, which are performed through the excited states of Cars. Therefore, increasing our knowledge on excitation relaxation dynamics of Cars is important for understanding of the functions of Cars. In light-harvesting complexes, there exist Cars functioning by converting the π-conjugation number in response to light conditions. It is well known that some microalgae have a mechanism controlling the conjugation number of Cars, called as the diadinoxanthin cycle; diadinoxanthin (10 conjugations) is accumulated under low light, whereas diatoxanthin (11 conjugations) appears under high light. However, the excitation relaxation dynamics of these two Cars have not been clarified. In the present study, we investigated excitation relaxation dynamics of diadinoxanthin and diatoxanthin in relation to their functions, by the ultrafast fluorescence spectroscopy. After an excitation to the S2 state, the intramolecular vibrational redistribution occurs, followed by the internal conversion to the S1 state. The S2 lifetimes were analyzed to be 175 fs, 155 fs, and 140 fs in diethyl ether, ethanol, and acetone, respectively, for diadinoxanthin, and 155 fs, 135 fs, and 125 fs in diethyl ether, ethanol, and acetone, respectively for diatoxanthin. By converting diadinoxanthin to diatoxanthin, the absorption spectra shift to longer wavelengths by 5-7 nm, and lifetimes of S2 and S1 states decrease by 11-13% and 52%, respectively. Differences in levels and lifetimes of excited states between diadinoxanthin and diatoxanthin are small; therefore, it is suggested that changes in the energy level of chlorophyll a are necessary to efficiently control the functions of the diadinoxanthin cycle.


Assuntos
Acetona , Carotenoides , Carotenoides/química , Clorofila/química , Clorofila A , Etanol , Éter , Complexos de Proteínas Captadores de Luz/química , Xantofilas
8.
Arch Microbiol ; 204(1): 115, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34984587

RESUMO

We describe a new species of purple sulfur bacteria (Chromatiaceae, anoxygenic phototrophic bacteria) isolated from a microbial mat in the sulfidic geothermal outflow of a hot spring in Rotorua, New Zealand. This phototroph, designated as strain NZ, grew optimally near 45 °C but did not show an absorption maximum at 915 nm for the light-harvesting-reaction center core complex (LH1-RC) characteristic of other thermophilic purple sulfur bacteria. Strain NZ had a similar carotenoid composition as Thermochromatium tepidum, but unlike Tch. tepidum, grew photoheterotrophically on acetate in the absence of sulfide and metabolized thiosulfate. The genome of strain NZ was significantly larger than that of Tch. tepidum but slightly smaller than that of Allochromatium vinosum. Strain NZ was phylogenetically more closely related to mesophilic purple sulfur bacteria of the genus Allochromatium than to Tch. tepidum. This conclusion was reached from phylogenetic analyses of strain NZ genes encoding 16S rRNA and the photosynthetic functional gene pufM, from phylogenetic analyses of entire genomes, and from a phylogenetic tree constructed from the concatenated sequence of 1090 orthologous proteins. Moreover, average nucleotide identities and digital DNA:DNA hybridizations of the strain NZ genome against those of related species of Chromatiaceae supported the phylogenetic analyses. From this collection of properties, we describe strain NZ here as the first thermophilic species of the genus Allochromatium, Allochromatium tepidum NZT, sp. nov.


Assuntos
Chromatiaceae , Fontes Termais , Chromatiaceae/genética , Complexos de Proteínas Captadores de Luz , Filogenia , RNA Ribossômico 16S/genética
9.
Plant Direct ; 5(12): e368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938941

RESUMO

pH homeostasis in the chloroplast is crucial for the control of photosynthesis and other metabolic processes in plants. Recently, nuclear-encoded Day-Length-dependent Delayed Greening1 (DLDG1) and Fluctuating-Light Acclimation Protein1 (FLAP1) that are required for the light-inducible optimization of plastidial pH in Arabidopsis thaliana were identified. DLDG1 and FLAP1 homologs are specifically conserved in oxygenic phototrophs, and a DLDG1 homolog, Ycf10, is encoded in the chloroplast genome in plant cells. However, the function of Ycf10 and its physiological significance are unknown. To address this, we constructed ycf10 tobacco Nicotiana tabacum mutants and characterized their phenotypes. The ycf10 tobacco mutants grown under continuous-light conditions showed a pale-green phenotype only in developing leaves, and it was suppressed in short-day conditions. The ycf10 mutants also induced excessive non-photochemical quenching (NPQ) compared with those in the wild-type at the induction stage of photosynthesis. These phenotypes resemble those of Arabidopsis dldg1 mutants, suggesting that they have similar functions. However, there are distinct differences between the two mutant phenotypes: The highly induced NPQ in tobacco ycf10 and the Arabidopsis dldg1 mutants are diminished and enhanced, respectively, with increasing duration of the fluctuating actinic-light illumination. Ycf10 and DLDG1 were previously shown to localize in chloroplast envelope-membranes, suggesting that Ycf10 and DLDG1 differentially control H+ exchange across these membranes in a light-dependent manner to control photosynthesis.

10.
Mar Drugs ; 19(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203079

RESUMO

Photooxidative stress-inducible water-soluble astaxanthin-binding proteins, designated as AstaP, were identified in two Scenedesmaceae strains, Coelastrella astaxanthina Ki-4 and Scenedesmus obtusus Oki-4N; both strains were isolated under high light conditions. These AstaPs are classified as a novel family of carotenoprotein and are useful for providing valuable astaxanthin in water-soluble form; however, the distribution of AstaP orthologs in other microalgae remains unknown. Here, we examined the distribution of AstaP orthologs in the family Scenedesmaceae with two model microalgae, Chlamydomonas reinhardtii and Chlorella variabilis. The expression of AstaP orthologs under photooxidative stress conditions was detected in cell extracts of Scenedesmaceae strains, but not in model algal strains. Aqueous orange proteins produced by Scenedesmaceae strains were shown to bind astaxanthin. The protein from Scenedesmus costatus SAG 46.88 was purified. It was named ScosAstaP and found to bind astaxanthin. The deduced amino acid sequence from a gene encoding ScosAstaP showed 62% identity to Ki-4 AstaP. The expression of the genes encoding AstaP orthologs was shown to be inducible under photooxidative stress conditions; however, the production amounts of AstaP orthologs were estimated to be approximately 5 to 10 times lower than that of Ki-4 and Oki-4N.


Assuntos
Proteínas de Transporte/metabolismo , Clorófitas/metabolismo , Estresse Oxidativo/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Clorófitas/química , Clorófitas/classificação , Luz , Scenedesmus/química , Scenedesmus/classificação , Scenedesmus/metabolismo , Solubilidade , Água , Xantofilas/química , Xantofilas/isolamento & purificação , Xantofilas/metabolismo
11.
BMC Biol ; 18(1): 126, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938439

RESUMO

BACKGROUND: Plastid electron transport systems are essential not only for photosynthesis but also for dissipating excess reducing power and sinking excess electrons generated by various redox reactions. Although numerous organisms with plastids have lost their photoautotrophic lifestyles, there is a spectrum of known functions of remnant plastids in non-photosynthetic algal/plant lineages; some of non-photosynthetic plastids still retain diverse metabolic pathways involving redox reactions while others, such as apicoplasts of apicomplexan parasites, possess highly reduced sets of functions. However, little is known about underlying mechanisms for redox homeostasis in functionally versatile non-photosynthetic plastids and thus about the reductive evolution of plastid electron transport systems. RESULTS: Here we demonstrated that the central component for plastid electron transport systems, plastoquinone/plastoquinol pool, is still retained in a novel strain of an obligate heterotrophic green alga lacking the photosynthesis-related thylakoid membrane complexes. Microscopic and genome analyses revealed that the Volvocales green alga, chlamydomonad sp. strain NrCl902, has non-photosynthetic plastids and a plastid DNA that carries no genes for the photosynthetic electron transport system. Transcriptome-based in silico prediction of the metabolic map followed by liquid chromatography analyses demonstrated carotenoid and plastoquinol synthesis, but no trace of chlorophyll pigments in the non-photosynthetic green alga. Transient RNA interference knockdown leads to suppression of plastoquinone/plastoquinol synthesis. The alga appears to possess genes for an electron sink system mediated by plastid terminal oxidase, plastoquinone/plastoquinol, and type II NADH dehydrogenase. Other non-photosynthetic algae/land plants also possess key genes for this system, suggesting a broad distribution of an electron sink system in non-photosynthetic plastids. CONCLUSION: The plastoquinone/plastoquinol pool and thus the involved electron transport systems reported herein might be retained for redox homeostasis and might represent an intermediate step towards a more reduced set of the electron transport system in many non-photosynthetic plastids. Our findings illuminate a broadly distributed but previously hidden step of reductive evolution of plastid electron transport systems after the loss of photosynthesis.


Assuntos
Clorofíceas/fisiologia , Transporte de Elétrons/fisiologia , Evolução Molecular , Plastídeos/fisiologia , Fotossíntese
12.
Front Plant Sci ; 11: 1030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733521

RESUMO

The tolerance of photosynthesis to strong light increases in photosynthetic organisms during acclimation to strong light. We investigated the role of carotenoids in the protection of photosystem II (PSII) from photoinhibition after acclimation to strong light in the cyanobacterium Synechocystis sp. PCC 6803. In cells that had been grown under strong light at 1,000 µmol photons m-2 s-1 (SL), specific carotenoids, namely, zeaxanthin, echinenone, and myxoxanthophyll, accumulated at high levels, and the photoinhibition of PSII was less marked than in cells that had been grown under standard growth light at 70 µmol photons m-2 s-1 (GL). The rate of photodamage to PSII, as monitored in the presence of lincomycin, did not differ between cells grown under SL and GL, suggesting that the mitigation of photoinhibition after acclimation to SL might be attributable to the enhanced ability to repair PSII. When cells grown under GL were transferred to SL, the mitigation of photoinhibition of PSII occurred in two distinct stages: a first stage that lasted 4 h and the second stage that occurred after 8 h. During the second stage, the accumulation of specific carotenoids was detected, together with enhanced synthesis de novo of proteins that are required for the repair of PSII, such as the D1 protein, and suppression of the production of singlet oxygen (1O2). In the ΔcrtRΔcrtO mutant of Synechocystis, which lacks zeaxanthin, echinenone, and myxoxanthophyll, the mitigation of photoinhibition of PSII, the enhancement of protein synthesis, and the suppression of production of 1O2 were significantly impaired during the second stage of acclimation. Thus, elevated levels of the specific carotenoids during acclimation to strong light appeared to protect protein synthesis from 1O2, with the resultant mitigation of photoinhibition of PSII.

13.
J Photochem Photobiol B ; 209: 111950, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32682285

RESUMO

Carotenoids are essential components of photosynthetic organisms including land plants, algae, cyanobacteria, and photosynthetic bacteria. Although the light-mediated regulation of carotenoid biosynthesis, including the light/dark cycle as well as the dependence of carotenoid biosynthesis-related gene translation on light wavelength, has been investigated in land plants, these aspects have not been studied in microalgae. Here, we investigated carotenoid biosynthesis in Euglena gracilis and found that zeaxanthin accumulates in the dark. The major carotenoid species in E. gracilis, namely ß-carotene, neoxanthin, diadinoxanthin and diatoxanthin, accumulated corresponding to the duration of light irradiation under the light/dark cycle, although the translation of carotenoid biosynthesis genes hardly changed. Irradiation with either blue or red-light (3 µmol photons m-2 s-1) caused a 1.3-fold increase in ß-carotene content compared with the dark control. Blue-light irradiation (300 µmol photons m-2 s-1) caused an increase in the cellular content of both zeaxanthin and all trans-diatoxanthin, and this increase was proportional to blue-light intensity. In addition, pre-irradiation with blue-light of 3 or 30 µmol photons m-2 s-1 enhanced the photosynthetic activity and tolerance to high-light stress. These findings suggest that the accumulation of ß-carotene is regulated by the intensity of light, which may contribute to the acclimation of E. gracilis to the light environment in day night conditions.


Assuntos
Clorofila/metabolismo , Euglena gracilis/efeitos da radiação , beta Caroteno/biossíntese , Aclimatação/efeitos da radiação , Euglena gracilis/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Xantofilas/metabolismo , Zeaxantinas/metabolismo , beta Caroteno/genética
14.
Int J Syst Evol Microbiol ; 70(9): 4920-4926, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32730197

RESUMO

An obligate aerobic and bacteriochlorophyll a-containing bacterium, designated strain AI77T, was isolated from a fish farm in Uwa Sea, Japan. Cells were Gram-stain-negative, coccoid- to oval-shaped, and showed no motility. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain AI77T is a member of the genus Roseobacter and closely related to Roseobacter ponti MM-7T (97.8 %), Roseobacter denitrificans OCh 114T (97.3 %) and Roseobacter litoralis OCh 149T (97.3 %). The G+C content of strain AI77T was 61.0 mol%. The average amino acid identity values of the genome in strain AI77T with those in R. denitrificans OCh 114T and R. litoralis OCh 149T were 73.26 % (SD 16.46) and 72.63 % (SD 16.76), respectively. The digital DNA-DNA hybridization values of strain AI77T with the type strains R. denitrificans OCh 114T and R. litoralis OCh 149T were 18.70 and 18.50 %, respectively. The dominant fatty acids (>10 % of total fatty acids) of AI77T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and saturated fatty acid C16 : 0. The sole respiratory quinone was ubiquinone-10. The predominant polar lipids were phosphatidylcholine, phosphatidylglycerol and diphosphatidylglycerol. Based on the genetic and phenotypic data obtained herein, we conclude that strain AI77T represents a new species of the genus Roseobacter, for which we propose the name Roseobacter cerasinus sp. nov.; the type strain is AI77T (=DSM 110091T=NBRC 114115T).


Assuntos
Aquicultura , Filogenia , Roseobacter/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Japão , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Roseobacter/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/química
15.
Biochemistry ; 59(25): 2351-2358, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32515940

RESUMO

Blastochloris tepida is a newly described thermophilic purple bacterium containing bacteriochlorophyll b. Using purified light-harvesting 1 reaction center (LH1-RC) core complexes from Blc. tepida, we compared the biochemical, spectroscopic, and thermal denaturation properties of these complexes with those of its mesophilic counterpart, Blc. viridis. Besides their growth temperature optima, a striking difference between the two species was seen in the carotenoid composition of their LH1-RC complexes. The more thermostable Blc. tepida complex contained more carotenoids with longer conjugation lengths (n > 9), such as lycopenes (n = 11), and had a total carotenoid content significantly higher than that of the Blc. viridis complex, irrespective of the light intensity used for growth. The thermostability of LH1-RCs from both Blc. tepida and Blc. viridis decreased significantly in cells grown in the presence of diphenylamine, a compound that inhibits the formation of highly conjugated carotenoids. In contrast to the thermophilic purple bacterium Thermochromatium tepidum, where Ca2+ is essential for LH1-RC thermostability, Ca2+ neither was present in nor had any effect on the thermostability of the Blc. tepida LH1-RC. These results point to a mechanism that carotenoids with elongated conjugations enhance hydrophobic interactions with proteins in the Blc. tepida LH1-RC, thereby allowing the complexes to withstand thermal denaturation. This conclusion is bolstered by a structural model of the Blc. tepida LH1-RC and is the first example of photocomplex thermostability being linked to a carotenoid-based mechanism.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Licopeno/análogos & derivados , Complexo de Proteína do Fotossistema I/química , Sequência de Aminoácidos , Difenilamina/farmacologia , Hyphomicrobiaceae/química , Hyphomicrobiaceae/efeitos dos fármacos , Estabilidade Proteica , Alinhamento de Sequência , Temperatura
16.
J Gen Appl Microbiol ; 66(2): 53-58, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32224594

RESUMO

Cyanobacteria are oxygenic photoautotrophic prokaryotes containing chlorophylls and carotenoids, and the latter play important roles in light-harvesting, protection of excess light, assembly of pigment-protein complexes, and stabilization of lipid membranes. Cyanobacteria produce many kinds of carotenoids, such as ß-carotene, zeaxanthin, echinenone, and myxol glycosides, which have a cyclic structure at one or both end(s). Cyclization of lycopene is a branch point in carotenoid biosynthesis to ß-carotene and γ-carotene. Two types of lycopene cyclases, CruA/CruP-type and CrtL-type, are functionally confirmed in only five species, while homologous genes are found in the genomes of most cyanobacteria. This review summarizes the carotenogenesis pathways and the functional enzymes along with genes, focusing particularly on the cyclization of lycopene by distinct types of lycopene cyclases in cyanobacteria.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/enzimologia , Cianobactérias/genética , Liases Intramoleculares/genética , Licopeno/metabolismo , Vias Biossintéticas , Filogenia
17.
J Gen Appl Microbiol ; 66(2): 116-120, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32213752

RESUMO

Heterologous production of a useful carotenoid astaxanthin was achieved in a cyanobacterium Synechocystis sp. PCC 6803 with the aid of marine bacterial genes. Astaxanthin and its intermediates emerged at high levels, whereas ß-carotene and zeaxanthin disappeared in the strain. Total carotenoid accumulation was nearly two fold compared with wild type. The astaxanthin-producing strain was capable of only growing heterotrophically, which was likely due to the absence of ß-carotene. Further enhanced accumulation was pursued by gene overexpression for possible rate-limiting steps in the biosynthesis pathway.


Assuntos
Caulobacteraceae/enzimologia , Oxigenases de Função Mista/metabolismo , Oxigenases/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Vias Biossintéticas , Caulobacteraceae/genética , Cromatografia Líquida de Alta Pressão , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Oxigenases de Função Mista/genética , Oxigenases/genética , Transformação Bacteriana , Xantofilas/metabolismo
18.
Photosynth Res ; 144(1): 101-107, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32198677

RESUMO

We discovered that pigments including carotenoids and (bacterio)chlorophylls in pigment-protein complexes, membrane fragments, and chlorosomes suspended in water could be injected directly into C18 HPLC and analyzed without any other treatments. We applied this method to LH1-RC and chromatophores of purple bacteria, chlorosomes of green sulfur bacteria, thylakoid membranes of cyanobacteria, and PSII and thylakoid membranes of spinach. HPLC elution profiles and pigment composition were the same as those of the conventional extraction method. The principle of this method might be that samples are first trapped on top of column, followed by the immediate extraction of the pigments with the HPLC eluent and their separation using the C18 column, as usual. In the conventional extraction method, pigments are first extracted with organic solvents, followed by evaporation of the solvents. The dried pigments are then dissolved in organic solvents and injected into C18 HPLC after filtration. The advantages of this method include the preventions of pigment isomerization and oxidation and the possibility of injecting all samples. Its drawbacks include the accumulation of denatured proteins at the top of column, causing increased HPLC pressure. The use of a guard column might solve this problem. Many factors, such as samples, column, and HPLC systems, may affect this method. Nevertheless, we think that some samples can be analyzed using this method.


Assuntos
Bacterioclorofilas/metabolismo , Clorofila/metabolismo , Água/metabolismo , Cromatografia Líquida de Alta Pressão
19.
Plant Cell Physiol ; 61(2): 276-282, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593237

RESUMO

For carotenogenesis, two biosynthetic pathways from phytoene to lycopene are known. Most bacteria and fungi require only phytoene desaturase (PDS, CrtI), whereas land plants require four enzymes: PDS (CrtP), ζ-carotene desaturase (ZDS, CrtQ), ζ-carotene isomerase (Z-ISO) and cis-carotene isomerase (CrtISO, CrtH). The gene encoding Z-ISO has been functionally identified in only two species, Arabidopsis thaliana and Zea mays, and has been little studied in other organisms. In this study, we found that the deduced amino acid sequences of Arthrospira Z-ISO and Euglena Z-ISO have 58% and 62% identity, respectively, with functional Z-ISO from Arabidopsis. We studied the function of Z-ISO genes from the cyanobacterium Arthrospira platensis and eukaryotic microalga Euglena gracilis. The Z-ISO genes of Arthrospira and Euglena were transformed into Escherichia coli strains that produced mainly 9,15,9'-tri-cis-ζ-carotene in darkness. In the resulting E. coli transformants cultured under darkness, 9,9'-di-cis-ζ-carotene was accumulated predominantly as Z-ISO in Arabidopsis. This indicates that the Z-ISO genes were involved in the isomerization of 9,15,9'-tri-cis-ζ-carotene to 9,9'-di-cis-ζ-carotene in darkness. This is the first functional analysis of Z-ISO as a ζ-carotene isomerase in cyanobacteria and eukaryotic microalgae. Green sulfur bacteria and Chloracidobacterium also use CrtP, CrtQ and CrtH for lycopene synthesis as cyanobacteria, but their genomes did not comprise Z-ISO genes. Consequently, Z-ISO is needed in oxygenic phototrophs, whereas it is not found in anoxygenic species.


Assuntos
Carotenoides/metabolismo , Euglena/metabolismo , Oxigênio/metabolismo , Spirulina/metabolismo , cis-trans-Isomerases/metabolismo , Acidobacteria/enzimologia , Acidobacteria/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis , Bactérias/enzimologia , Bactérias/genética , Vias Biossintéticas/genética , Clonagem Molecular , Escherichia coli/genética , Euglena/enzimologia , Euglena/genética , Filogenia , Análise de Sequência de Proteína , Spirulina/enzimologia , Spirulina/genética , Zea mays/embriologia , Zea mays/genética , cis-trans-Isomerases/classificação , cis-trans-Isomerases/genética , zeta Caroteno/metabolismo
20.
Int J Syst Evol Microbiol ; 70(1): 596-603, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31622237

RESUMO

A strictly aerobic, bacteriochlorophyll a-containing betaproteobacterium, designated strain W35T, was isolated from a biofilm sampled at Tama River in Japan. The non-motile and rod-shaped cells formed pink-beige pigmented colonies on agar plates containing organic compounds, and showed an in vivo absorption maximum at 871 nm in the near-infrared region, typical for the presence of bacteriochlorophyll a. The new bacterial strain is Gram-negative, and oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain W35T was closely related to species in the genus Aquabacterium. The closest phylogenetic relatives of strain W35T were Aquabacterium commune B8T (97.9 % sequence similarity), Aquabacterium citratiphilum B4T (97.2 %) and Aquabacterium limnoticum ABP-4T (97.0 %). The major cellular fatty acids were C16  :  1ω7c (50.4 %), C16  :  0 (22.7 %), summed feature 8 (C18  :  1ω7c/C18  :  1ω6c; 9.7 %), C18  :  3ω6c (5.5 %), C12  :  0 (5.3 %) and C10  :  0 3OH (2.7 %). The respiratory quinone was ubiquinone-8. Predominant polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The G+C content of the genomic DNA was 70.4 mol% (genome data) and 71.4 mol% (HPLC). The genome size of strain W35T is 6.1 Mbp and average nucleotide identity analysis indicated genome similarities of strain W35T and related Aquabacterium type strains to be 78-79 %. The results of polyphasic comparisons showed that strain W35T was clearly distinguishable from other members of the genus Aquabacterium. Therefore, we propose a new species in the genus Aquabacterium, namely, Aquabacterium pictum sp. nov. The type strain is W35T (=DSM 106757T=NBRC 111963T). The description of the genus Aquabacterium is also emended.


Assuntos
Bacterioclorofila A/química , Burkholderiales/classificação , Filogenia , Rios/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Biofilmes , Burkholderiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Japão , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA