Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
N Biotechnol ; 58: 45-54, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32502629

RESUMO

The proteins secreted by human tissues and blood cells, the secretome, are important both for the basic understanding of human biology and for identification of potential targets for future diagnosis and therapy. Here, a high-throughput mammalian cell factory is presented that was established to create a resource of recombinant full-length proteins covering the majority of those annotated as 'secreted' in humans. The full-length DNA sequences of each of the predicted secreted proteins were generated by gene synthesis, the constructs were transfected into Chinese hamster ovary (CHO) cells and the recombinant proteins were produced, purified and analyzed. Almost 1,300 proteins were successfully generated and proteins predicted to be secreted into the blood were produced with a success rate of 65%, while the success rates for the other categories of secreted proteins were somewhat lower giving an overall one-pass success rate of ca. 58%. The proteins were used to generate targeted proteomics assays and several of the proteins were shown to be active in a phenotypic assay involving pancreatic ß-cell dedifferentiation. Many of the proteins that failed during production in CHO cells could be rescued in human embryonic kidney (HEK 293) cells suggesting that a cell factory of human origin can be an attractive alternative for production in mammalian cells. In conclusion, a high-throughput protein production and purification system has been successfully established to create a unique resource of the human secretome.


Assuntos
Ensaios de Triagem em Larga Escala , Animais , Células CHO , Cricetulus , DNA/biossíntese , DNA/genética , Células HEK293 , Humanos , Proteômica , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-26565067

RESUMO

For protein analysis of biological samples, two major strategies are used today; mass spectrometry (MS) and antibody-based methods. Each strategy offers advantages and drawbacks. However, combining the two using an immunoenrichment step with MS analysis brings together the benefits of each method resulting in increased sensitivity, faster analysis and possibility of higher degrees of multiplexing. The immunoenrichment can be performed either on protein or peptide level and quantification standards can be added in order to enable determination of the absolute protein concentration in the sample. The combination of immunoenrichment and MS holds great promise for the future in both proteomics and clinical diagnostics. This review describes different setups of immunoenrichment coupled to mass spectrometry and how these can be utilized in various applications.


Assuntos
Anticorpos , Cromatografia de Afinidade , Espectrometria de Massas , Proteômica , Anticorpos/análise , Anticorpos/química , Anticorpos/metabolismo
3.
Science ; 347(6220): 1260419, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613900

RESUMO

Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.


Assuntos
Bases de Dados de Proteínas , Proteoma/metabolismo , Processamento Alternativo , Linhagem Celular , Feminino , Genes , Código Genético , Humanos , Internet , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Análise Serial de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/genética , Distribuição Tecidual , Transcrição Gênica
4.
Mol Cell Proteomics ; 13(2): 397-406, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24309898

RESUMO

Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.


Assuntos
Anticorpos/farmacologia , Expressão Gênica , Genômica/métodos , Especificidade de Órgãos/genética , Proteômica/métodos , Transcriptoma , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Proteínas/genética , Proteínas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Integração de Sistemas , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA