Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 324: 103075, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219342

RESUMO

A consensus was built in the first half of the 20th century, which was further debated more than 3 decades ago, that the wettability and condensation mechanisms on smooth solid surfaces are modified by the adsorption of organic contaminants present in the environment. Recently, disagreement has formed about this topic once again, as many researchers have overlooked contamination due to its difficulty to eliminate. For example, the intrinsic wettability of rare earth oxides has been reported to be hydrophobic and non-wetting to water. These materials were subsequently shown to display dropwise condensation with steam. Nonetheless, follow on research has demonstrated that the intrinsic wettability of rare earth oxides is hydrophilic and wetting to water, and that a transition to hydrophobicity occurs in a matter of hours-to-days as a consequence of the adsorption of volatile organic compounds from the ambient environment. The adsorption mechanisms, kinetics, and selectivity, of these volatile organic compounds are empirically known to be functions of the substrate material and structure. However, these mechanisms, which govern the surface wettability, remain poorly understood. In this contribution, we introduce current research demonstrating the different intrinsic wettability of metals, rare earth oxides, and other smooth materials, showing that they are intrinsically hydrophilic. Then we provide details on research focusing on the transition from wetting (hydrophilicity) to non-wetting (hydrophobicity) on somooth surfaces due to adsorption of volatile organic compounds. A state-of-the-art figure of merit mapping the wettability of different smooth solid surfaces to ambient exposure as a function of the surface carbon content has also been developed. In addition, we analyse recent works that address these wetting transitions so to shed light on how such processes affect droplet pinning and lateral adhesion. We then conclude with objective perspectives about research on wetting to non-wetting transitions on smooth solid surfaces in an attempt to raise awareness regarding this surface contamination phenomenon within the engineering, interfacial science, and physical chemistry domains.

2.
ACS Appl Mater Interfaces ; 16(1): 1779-1793, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164911

RESUMO

Lowering droplet-surface interactions via the implementation of lubricant-infused surfaces (LISs) has received important attention in the past years. LISs offer enhanced droplet mobility with low sliding angles and the recently reported slippery Wenzel state, among others, empowered by the presence of the lubricant infused in between the structures, which eventually minimizes the direct interactions between liquid droplets and LISs. Current strategies to increase heat transfer during condensation phase-change relay on minimizing the thickness of the coating as well as enhancing condensate shedding. While further surface structuring may impose an additional heat transfer resistance, the presence of micro-structures eventually reduces the effective condensate-surface intimate interactions with the consequently decreased adhesion and enhanced shedding performance, which is investigated in this work. This is demonstrated by macroscopic and optical microscopy condensation experimental observations paying special attention at the liquid-lubricant and liquid-solid binary interactions at the droplet-LIS interface, which is further supported by a revisited force balance at the droplet triple contact line. Moreover, the occurrence of a condensation-coalescence-shedding regime is quantified for the first time with droplet growth rates one and two orders of magnitude greater than during condensation-coalescence and direct condensation regimes, respectively. Findings presented here are of great importance for the effective design and implementation of LISs via surface structure endowing accurate droplet mobility and control for applications such as anti-icing, self-cleaning, water harvesting, and/or liquid repellent surfaces as well as for condensation heat transfer.

3.
iScience ; 25(1): 103691, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35036875

RESUMO

The surface free energy of rare earth oxides (REOs) has been debated during the last decade, with some reporting REOs to be intrinsically hydrophilic and others reporting hydrophobic. Here, we investigate the wettability and surface chemistry of pristine and smooth REO surfaces, conclusively showing that hydrophobicity stems from wettability transition due to volatile organic compound adsorption. We show that, for indoor ambient atmospheres and well-controlled saturated hydrocarbon atmospheres, the apparent advancing and receding contact angles of water increase with exposure time. We examined the surfaces comprehensively with multiple surface analysis techniques to confirm hydrocarbon adsorption and correlate it to wettability transition mechanisms. We demonstrate that both physisorption and chemisorption occur on the surface, with chemisorbed hydrocarbons promoting further physisorption due to their high affinity with similar hydrocarbon molecules. This study offers a better understanding of the intrinsic wettability of REOs and provides design guidelines for REO-based durable hydrophobic coatings.

4.
Phys Chem Chem Phys ; 22(24): 13629-13636, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32519700

RESUMO

Hydration structures are ubiquitous at solid/liquid interfaces and play a key role in various physicochemical and biological phenomena. Recently, it has been reported that dissolved gas molecules attracted to hydrophobic surfaces form adsorbed gas layers. Although a hydration structure and adsorbed gas layers coexist on the surface, the relationships between them remain unknown. In this study, we investigated a highly ordered pyrolytic graphite/pure water interface with and without adsorbed gas layers using frequency-modulation atomic force microscopy. We penetrated the adsorbed gas layers with the strong load force of the AFM tip and thereby obtained the frequency shift curves inside them. By comparing the curves with those measured on a bare HOPG surface, we found that the adsorbed gas layers were located at regions where the molecular density of water was low and were sandwiched between hydration layers with high water density. Moreover, the distance between adjacent hydration layers was larger than that predicted by simulations and was the same with and without the adsorbed gas layers. We propose that gas molecules on the hydrophobic surface interact with the hydration structure before forming the adsorbed gas layers, and extend the distance between hydration layers.

5.
Micromachines (Basel) ; 11(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070019

RESUMO

In all kinds of liquid desiccant dehumidification systems, the temperature increase of the desiccant solution due to the effect of absorptive heating is one of the main reasons of performance deterioration. In this study, we look into the thermal effects during vapor absorption into single hygroscopic liquid desiccant droplets. Specifically, the effect of substrate conductivity on the transient heat and mass transfer process is analyzed in detail. The relative strength of the thermal effect and the solutal effect on the rate of vapor absorption is investigated and compared to the thermal effect by evaporative cooling taking place in pure water droplets. In the case of liquid desiccants, results indicate that the high thermal conductivity of copper substrates ensures more efficient heat removal, and the temperature at the droplet surface decreases more rapidly than that on Polytetrafluoroethylene (PTFE) substrates. As a result, the initial rate of vapor absorption on copper substrates slightly outweighs that on PTFE substrates. Further analysis by decomposing the vapor pressure difference indicates that the variation of vapor pressure caused by the temperature change during vapor absorption is much weaker than that induced by the concentration change. The conclusions demonstrate that a simplified isothermal model can be applied to capture the main mechanisms during vapor absorption into hygroscopic droplets even though it is evidenced to be unreliable for droplet evaporation.

6.
RSC Adv ; 10(73): 44854-44859, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516233

RESUMO

We report for the first time a zigzag-shaped gas phase at a highly-ordered pyrolytic graphite/water interface. The novel shape of the gaseous domain is triggered by the holes of the underlying solid-like layers, which are composed of air molecules. Specifically, many holes were created by heating in the thin solid-like layers, which roughened them. The gas domains that formed on these layers deformed from circular to zigzag-shaped as the contact lines expanded while avoiding the holes of the underlying layers. We explained the formation and growth processes of these gas structures in terms of thin film growth, which varies with the mobility of the constituent molecules.

7.
Langmuir ; 36(1): 204-213, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31860312

RESUMO

This study investigates the evaporation of sessile pure water and nanosuspension drops on viscoelastic polydimethylsiloxane (PDMS) films. We varied the viscoelasticity of the PDMS films by controlling the curing ratio and categorized them into three types: stiff (10:1, 20:1, 40:1), soft (60:1, 80:1), and very soft (100:1, 120:1, 140:1, 160:1). On stiff surfaces, pure water drops initially evaporate in a constant contact radius (CCR) mode, followed by a constant contact angle mode, and finally in a mixed mode of evaporation. Nanosuspension drops follow the same trend as water drops but with a difference toward the end of their lifetimes, when a short second CCR mode is observed. Complete evaporation of nanosuspension drops on stiff substrates leads to particle deposition patterns similar to a coffee ring with cracks and deposition tails. On soft surfaces, the initial spreading is followed by a pseudo-CCR mode. Complete evaporation of nanosuspension drops on soft substrates leads to deposits in the form of a uniform ring with a sharp ox-horn profile. Unexpectedly, the initial spreading is followed by a mixed mode on very soft substrates, on which wetting ridges (WRs) pulled up by the vertical component of surface tension are clearly observed in the vicinity of the contact line (CL). As the evaporation proceeds, the decreasing contact angle breaks the force balance in the horizontal direction at the CL and gives rise to a net horizontal force, which causes the CL to recede, transferring the horizontal force to the WR. Because of the viscoelastic nature of the very soft substrate, this horizontal force acting on the WR cannot be completely countered by the bulk of the substrate underneath. As a result, the WR moves horizontally in a viscous-flow way, which also enables the CL to be continuously anchored to the ridge and to recede relative to the bulk of the substrate. Consequently, a mixed mode of evaporation occurs. Complete evaporation of nanosuspension drops on very soft substrates leads to finger-like deposits.

8.
ACS Appl Mater Interfaces ; 11(27): 24735-24750, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180632

RESUMO

Nonwetting surfaces engineered from intrinsically hydrophilic metallic materials are promising for self-cleaning, anti-icing, or condensation heat transfer applications where the durability of commonly applied hydrophobic coatings is an issue. In this work, we fabricate and study the wetting behavior and the condensation performance on two metallic nonwetting surfaces with varying number and size of roughness tiers without the need for further hydrophobic coating procedure. On one hand, the surface resembling a rose petal exhibits a sticky nonwetting behavior as drops wet the microscopic roughness features with consequent enhanced drop adhesion, which leads to filmwise condensation. On the other hand, the surface resembling a lotus leaf provides super-repellent nonwetting behavior prompting the continuous nucleation, growth, and departure of spherical drops in a dropwise condensation fashion. On a lotus leaf surface, the third nanoscale roughness tier (created by chemical oxidation) combined with ambience exposure prompts the growth of drops in the Cassie state with the benefit of minimal condensate adhesion. The two different condensation behaviors reported are well supported by a drop surface energy analysis, which accounts for the different wetting performance and the surface structure underneath the condensing drops. Further, we coated the above-mentioned surfaces with polydimethylsiloxane, which resulted in filmwise condensation due to the smoothening of the different roughness tiers. Continuous dropwise condensation on a hierarchical bioinspired lotus leaf metallic surface without the need for a conformal hydrophobic coating is hence demonstrated, which offers a novel path for the design and manufacture of noncoated metallic super-repellent surfaces for condensation phase change applications, among others.

9.
Phys Chem Chem Phys ; 21(3): 1046-1058, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30320327

RESUMO

The study of vapor absorption into liquid desiccant droplets is of general relevance to a better understanding and description of vapor absorption phenomena occurring at the macroscale as well as for practical optimization of dehumidification and refrigeration processes. Hence, in the present work, we provide the first systematic experimental study on the fundamentals of vapor absorption into liquid desiccant at the droplet scale, which initiates a novel avenue for the research of hygroscopic droplet growth. More specifically we address the behavior of lithium bromide-water droplets on hydrophobic PTFE and hydrophilic glass substrates under controlled ambient conditions. Driven by the vapor pressure difference between the ambient air and the droplet interface, desiccant droplets absorb water vapor and increase in volume. To provide further insights on the vapor absorption process, the evolution of the droplet profile is recorded using optical imaging and relevant profile characteristics are extracted. Results show that, even though the final expansion ratio of droplet volume is only a function of relative humidity, the dynamics of contact line and the absorption rate are found to differ greatly when comparing data with varying substrate wettability. Droplets on hydrophilic substrates show higher absorption kinetics and reach equilibrium with the ambient much faster than those on hydrophobic substrates. This is attributed to the absorption process being controlled by solute diffusion on the droplet side and to the shorter characteristic length for the solute diffusion on hydrophilic substrates. Moreover, the apparent droplet spreading process on hydrophilic substrates when compared to hydrophobic ones is explained based on a force balance analysis near the triple contact line, by the change of liquid-vapor surface tension due to the increase in water concentration, and assuming a development of a precursor film.

10.
Soft Matter ; 14(46): 9418-9424, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30427033

RESUMO

Manipulation of drop motion has attracted considerable attention recently as it is pertinent to industrial/biological applications such as microfluidics. Wettability gradients/contrasts applied to microtextured, superhydrophobic surfaces are probable candidates for engineering drop motion by virtue of their wettability controllability and low contact angle hysteresis. In the present work, we present a systematic study of drop mobility induced via wettability contrasts. A millimetre-sized water drop, placed on the boundary between two surfaces with distinct, uniform arrays of pillars, immediately moved toward the surface more densely populated with asperities, which was relatively more hydrophilic. The velocity of the motion was found to increase proportionally with the difference in pillar densities on each surface, in circumstances where the rear side surface had sufficiently small contact angle hysteresis. To elucidate the underlying mechanism of drop motion, we implemented a surface energy analysis for each motion event. Motion was initiated by the excess surface free energy due to drop deformation and directed in favour of energy minimisation. Lastly, we propose a theory to predict the direction of the drop which at the same time acts as the criterion for the motion to ensue.

11.
Phys Chem Chem Phys ; 20(29): 19430-19440, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29993049

RESUMO

The effect of ambient temperature and relative humidity on the dynamics of ethanol drop evaporation is investigated. Although drop evaporation of mixtures and pure fluids has been extensively studied, very little is known about the transition from a pure fluid to a binary mixture following transfer of a second component present in the atmosphere. This is of importance for industrial, biological and medical applications where the purity of the solvent is paramount. Adsorption-absorption and/or condensation of water into ethanol drops during evaporation is presented through direct quantification of the drop composition in time. In particular, we combine drop profile measurements with Gas Injection Chromatography (GIC) to directly quantify the amount of ethanol evaporated and that of water intake over time. As expected, drops evaporate faster at higher temperatures since both the ethanol saturation concentration and the vapor diffusion coefficient are directly proportional to temperature. On the other hand, increases in the ethanol evaporation rate and in the water intake are observed at higher relative humidity. The increase in ethanol evaporation at higher relative humidity is interpreted by the greater diffusion coefficient of ethanol into humid air when compared to dry air. Moreover, as ethanol evaporates in a high humidity environment, the drop interfacial temperature falls below the dew point due to evaporative cooling and water condenses compared to lower humidity conditions. As a consequence of the heat released by adsorption-absorption and/or condensation, a greater temperature is reported at the liquid-vapor interface as confirmed by IR thermography, inducing a greater ethanol saturation concentration at the surface and hence a greater driving force for evaporation. By coupling the drop profile and the composition of ethanol and water within the drop, we propose a combined evaporation-adsorption/absorption and/or condensation empirical correlation. The proposed correlation accounts for: the decreases in ethanol concentration due to water adsorption-absorption and/or condensation, the diffusion coefficient dependence on relative humidity, and the amount of water intake during evaporation. The proposed empirical correlation agrees remarkably well with experimental observations.

12.
Nano Lett ; 18(3): 1869-1874, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29424547

RESUMO

Fluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10-5 Pa) of the TEM. The superstability of this film was attributed to a combination of curvature, nanoroughness, and confinement resulting in a lower vapor pressure for water and hence inhibiting its vaporization. Occasional, suspended ultrathin water film with thickness of 3-20 nm were found and remained stable inside the CNT. This film thickness is 1 order of magnitude smaller than the critical film thickness (about 40 nm) reported by the Derjaguin-Landau-Verwey-Overbeek theory and previous experimental investigations. The stability of the suspended ultrathin water film is attributed to the additional molecular interactions due to the extended water meniscus, which balances the rest of the disjoining pressures.

13.
ACS Appl Mater Interfaces ; 9(40): 35391-35403, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28925681

RESUMO

Superhydrophobic surfaces are receiving increasing attention due to the enhanced condensation heat transfer, self-cleaning, and anti-icing properties by easing droplet self-removal. Despite the extensive research carried out on this topic, the presence or absence of microstructures on droplet adhesion during condensation has not been fully addressed yet. In this work we, therefore, study the condensation behavior on engineered superhydrophobic copper oxide surfaces with different structural finishes. More specifically, we investigate the coalescence-induced droplet-jumping performance on superhydrophobic surfaces with structures varying from the micro- to the nanoscale. The different structural roughness is possible due to the specific etching parameters adopted during the facile low-cost dual-scale fabrication process. A custom-built optical microscopy setup inside a temperature and relative humidity controlled environmental chamber was used for the experimental observations. By varying the structural roughness, from the micro- to the nanoscale, important differences on the number of droplets involved in the jumps, on the frequency of the jumps, and on the size distribution of the jumping droplets were found. In the absence of microstructures, we report an enhancement of the droplet-jumping performance of small droplets with sizes in the same order of magnitude as the microstructures. Microstructures induce further droplet adhesion, act as a structural barrier for the coalescence between droplets growing on the same microstructure, and cause the droplet angular deviation from the main surface normal. As a consequence, upon coalescence, there is a decrease in the net momentum in the out-of-plane direction, and the jump does not ensue. We demonstrate that the absence of microstructures has therefore a positive impact on the coalescence-induced droplet-jumping of micrometer droplets for antifogging, anti-icing, and condensation heat transfer applications.

14.
Sci Rep ; 7(1): 2036, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515431

RESUMO

For phase-change cooling schemes for electronics, quick activation of nucleate boiling helps safeguard the electronics components from thermal shocks associated with undesired surface superheating at boiling incipience, which is of great importance to the long-term system stability and reliability. Previous experimental studies show that bubble nucleation can occur surprisingly early on mixed-wettability surfaces. In this paper, we report unambiguous evidence that such unusual bubble generation at extremely low temperatures-even below the boiling point-is induced by a significant presence of incondensable gas retained by the hydrophobic surface, which exhibits exceptional stability even surviving extensive boiling deaeration. By means of high-speed imaging, it is revealed that the consequently gassy boiling leads to unique bubble behaviour that stands in sharp contrast with that of pure vapour bubbles. Such findings agree qualitatively well with numerical simulations based on a diffuse-interface method. Moreover, the simulations further demonstrate strong thermocapillary flows accompanying growing bubbles with considerable gas contents, which is associated with heat transfer enhancement on the biphilic surface in the low-superheat region.

15.
Langmuir ; 33(23): 5666-5674, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28510453

RESUMO

The effect of localized heating on the evaporation of pure sessile water drops was probed experimentally by a combination of infrared thermography and optical imaging. In particular, we studied the effect of three different heating powers and two different locations, directly below the center and edge of the drop. In all cases, four distinct stages were identified according to the emerging thermal patterns. In particular, depending on heating location, recirculating vortices emerge that either remain pinned or move azimuthally within the drop. Eventually, these vortices oscillate in different modes depending on heating location. Infrared data allowed extraction of temperature distribution on each drop surface. In turn, the flow velocity in each case was calculated and was found to be higher for edge heating, due to the one-directional nature of the heating. Additionally, calculation of the dimensionless Marangoni and Rayleigh numbers yielded the prevalence of Marangoni convection. Heating the water drops also affected the evaporation kinetics by promoting the "stick-slip" regime. Moreover, both the total number of depinning events and the pinning strength were found to be highly dependent on heating location. Lastly, we report a higher than predicted relationship between evaporation rate and heating temperature, due to the added influence of the recirculating flows on temperature distribution and hence evaporation flux.

16.
Langmuir ; 32(31): 7774-87, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27409353

RESUMO

Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° < θa < 170°). Incorporation of an appropriate convective boundary condition at the liquid-vapor interface reveals that the majority of heat transfer occurs at the three phase contact line, where the local heat flux can be up to 4 orders of magnitude higher than at the droplet top. Droplet distribution theory is incorporated to show that previous modeling approaches underpredict the overall heat transfer by as much as 300% for dropwise and jumping-droplet condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces.

17.
Langmuir ; 32(28): 7064-9, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27351126

RESUMO

The surface wettability of a liquid on the inner and outer surface of single carbon nanotubes (CNTs) was experimentally investigated. Although these contact angles on both surfaces were previously studied separately, the available data are of limited help to elucidate the effect of curvature orientation (concave or convex) on wettability due to the difference in surface structure. Here, we report on the three-phase contact region and wettability on the outer surface of CNT during the dipping and withdrawing experiment of CNT into an ionic liquid. Furthermore, the wettability on the inner surface was measured using a liquid within the same CNT. Our results show that the contact angle on the outer surface of the CNT is larger than that on the flat surface and that on the inner surface is smaller than that on the flat one. These findings suggest that the surface curvature orientation has a noticeable effect on the contact angle at the nanoscale because both inner and outer surfaces expose the same graphite wall structure and the contact line tension will be negligible in this situation. The presented results are rationalized using the free energy balance of liquid on curved surfaces.

18.
Phys Rev E ; 93: 043103, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176386

RESUMO

Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

19.
Langmuir ; 32(23): 5812-20, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27218303

RESUMO

We examine the effects of nanoparticle addition at low concentration on the evaporation kinetics of droplets in the constant radius mode. The evaporative behavior of deionized water and Al2O3 nanoparticle laden water on an aluminum substrate was observed at atmospheric and at different subatmospheric pressures. The two fluids exhibit the same evaporative behavior, independent of the droplet volume or the subatmospheric pressure. Moreover, the linear relationship between evaporation rate and droplet radius, initially proposed by Picknett and Bexon nearly four decades ago for droplets evaporating in the constant radius mode, is satisfied for both liquids. In addition, we have established a unified correlation solely function of fluid properties that extends this relationship to any subatmospheric pressure and fluid tested. We conclude that the addition of a small quantity of nanoparticles to the base fluid does not modify the kinetics of evaporation for pinned volatile droplets.

20.
Langmuir ; 32(17): 4361-9, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27074133

RESUMO

Small sessile drops of water containing either long or short strands of DNA ("biodrops") were deposited on silicon substrates and allowed to evaporate. Initially, the triple line (TL) of both types of droplet remained pinned but later receded. The TL recession mode continued at constant speed until almost the end of drop lifetime for the biodrops with short DNA strands, whereas those containing long DNA strands entered a regime of significantly lower TL recession. We propose a tentative explanation of our observations based on free energy barriers to unpinning and increases in the viscosity of the base liquid due to the presence of DNA molecules. In addition, the structure of DNA deposits after evaporation was investigated by AFM. DNA self-assembly in a series of perpendicular and parallel orientations was observed near the contact line for the long-strand DNA, while, with the short-stranded DNA, smoother ring-stains with some nanostructuring but no striations were evident. At the interior of the deposits, dendritic and faceted crystals were formed from short and long strands, respectively, due to diffusion and nucleation limited processes, respectively. We suggest that the above results related to the biodrop drying and nanostructuring are indicative of the importance of DNA length, i.e., longer DNA chains consisting of linearly bonded shorter, rod-like DNA strands.


Assuntos
DNA/química , Água/química , Cinética , Silício/química , Propriedades de Superfície , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA