Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plants (Basel) ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674547

RESUMO

Conferring crops with resistance to multiple diseases is crucial for stable food production. Genetic engineering is an effective means of achieving this. The rice receptor-like cytoplasmic kinase BSR1 mediates microbe-associated molecular pattern-induced immunity. In our previous study, we demonstrated that rice lines overexpressing BSR1 under the control of the maize ubiquitin promoter exhibited broad-spectrum resistance to rice blast, brown spot, leaf blight, and bacterial seedling rot. However, unfavorable phenotypes were observed, such as a decreased seed germination rate and a partial darkening of husked rice. Herein, we present a strategy to address these unfavorable phenotypes using an OsUbi7 constitutive promoter with moderate expression levels and a pathogen-inducible PR1b promoter. Rice lines expressing BSR1 under the influence of both promoters maintained broad-spectrum disease resistance. The seed germination rate and coloration of husked rice were similar to those of the wild-type rice.

2.
Plant J ; 96(6): 1137-1147, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30222251

RESUMO

Plants have evolved many receptor-like cytoplasmic kinases (RLCKs) to modulate their growth, development, and innate immunity. Broad-Spectrum Resistance 1 (BSR1) encodes a rice RLCK, whose overexpression confers resistance to multiple diseases, including fungal rice blast and bacterial leaf blight. However, the mechanisms underlying resistance remain largely unknown. In the present study, we report that BSR1 is a functional protein kinase that autophosphorylates and transphosphorylates an artificial substrate in vitro. Although BSR1 is classified as a serine/threonine kinase, it was shown to autophosphorylate on tyrosine as well as on serine/threonine residues when expressed in bacteria, demonstrating that it is a dual-specificity kinase. Protein kinase activity was found to be indispensable for resistance to rice blast and leaf blight in BSR1-overexpressing plants. Importantly, tyrosine phosphorylation of BSR1 was critical for proper localization of BSR1 in rice cells and played a crucial role in BSR1-mediated resistance to multiple diseases, as evidenced by compromised disease resistance in transgenic plants overexpressing a mutant BSR1 in which Tyr-63 was substituted with Ala. Overall, our data indicate that BSR1 is a non-receptor dual-specificity kinase and that both tyrosine and serine/threonine kinase activities are critical for the normal functioning of BSR1 in the resistance to multiple pathogens. Our results support the notion that tyrosine phosphorylation plays a major regulatory role in the transduction of defense signals from cell-surface receptor complexes to downstream signaling components in plants.


Assuntos
Resistência à Doença , Oryza/imunologia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Oryza/enzimologia , Oryza/fisiologia , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/fisiologia , Ácido Salicílico/metabolismo , Tirosina
4.
Plant Signal Behav ; 12(8): e1356968, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28758876

RESUMO

WRKY45 is a central regulator of disease resistance mediated by salicylic acid signaling in rice and its activation involves phosphorylation by OsMPK6. OsMPK6 phosphorylates WRKY45 at Thr266, Ser294, and Ser299 in vitro. Phosphorylation of Ser294 and/or Ser299 is required for full activation of WRKY45, but the importance of Thr266 phosphorylation has remained unknown. Here, we report on the characterization of Thr266 phosphorylation of WRKY45 in rice. Transient expression of mutant WRKY45 revealed that Thr266 is phosphorylated in vivo, together with Ser294/299. Replacement of Thr266 by Asn did not affect the enhanced Magnaporthe oryzae resistance afforded by WRKY45 overexpression. By contrast, replacement by Asp negated the enhancement of M. oryzae resistance. These results suggest that Thr266 phosphorylation acts negatively on WRKY45-dependent disease resistance.


Assuntos
Resistência à Doença , Oryza/metabolismo , Fosfotreonina/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Proteínas Mutantes/metabolismo , Fosforilação , Proteínas de Plantas/química , Plantas Geneticamente Modificadas
5.
Front Plant Sci ; 8: 171, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28232844

RESUMO

Plants are sessile organisms that are continuously exposed to a wide range of environmental stresses. To cope with various stresses using limited resources, plants have evolved diverse mechanisms of "tradeoff" that enable the allocation of resources to address the most life-threatening stress. During our studies on induced disease resistance in rice, we have found some important phenomena relevant to tradeoffs between biotic and abiotic stress responses, and between stress response and plant growth. We characterized these tradeoff phenomena from viewpoints of signaling crosstalks associated with transcriptional regulation. Here, I describe following topics: (1) PTP1-dependent increased disease susceptibility of rice under low temperature and high salinity conditions, (2) OsNPR1-dependent tradeoff between pathogen defense and photosynthesis, (3) tradeoff between pathogen defense and abiotic stress tolerance in WRKY45-overexpressing rice plants, and (4) WRKY62-dependent tradeoff between pathogen defense and hypoxia tolerance. Lastly, I discuss my view regarding the significance of such tradeoffs in agricultural production that should be considered in crop breeding; that is, the tradeoffs, although they benefit plants in nature, can be rather disadvantageous in agricultural production.

6.
Plant Cell Physiol ; 57(12): 2541-2551, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27837098

RESUMO

WRKY62 is a transcriptional repressor regulated downstream of WRKY45, a central transcription factor of the salicylic acid signaling pathway in rice. Previously, WRKY62 was reported to regulate defense negatively. However, our expressional analysis using WRKY62-knockdown rice indicated that WRKY62 positively regulates defense genes, including diterpenoid phytoalexin biosynthetic genes and their transcriptional regulator DPF. Blast and leaf blight resistance tests also showed that WRKY62 is a positive defense regulator. Yeast two-hybrid, co-immunoprecipitation and gel-shift assays showed that WRKY45 and WRKY62 can form a heterodimer, as well as homodimers, that bind to W-boxes in the DPF promoter. In transient assays in rice sheaths, the simultaneous introduction of WRKY45 and WRKY62 as effectors resulted in a strong activation of the DPF promoter:hrLUC reporter gene, whereas the activity declined with excessive WRKY62. Thus, the WRKY45-WRKY62 heterodimer acts as a strong activator, while the WRKY62 homodimer acts as a repressor. While benzothiadiazole induced equivalent numbers of WRKY45 and WRKY62 transcripts, consistent with heterodimer formation and DPF activation, submergence and nitrogen replacement induced only WRKY62 transcripts, consistent with WRKY62 homodimer formation and DPF repression. Moreover, WRKY62 positively regulated hypoxia genes, implying a role forWRKY62 in the modulation of the 'trade-off' between defense and hypoxia responses.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Oxigênio/metabolismo , Doenças das Plantas/imunologia , Fatores de Transcrição/metabolismo , Temperatura Baixa , Magnaporthe/fisiologia , Modelos Biológicos , Nitrogênio/metabolismo , Oryza/efeitos dos fármacos , Oryza/imunologia , Oryza/fisiologia , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Multimerização Proteica , Ácido Salicílico/metabolismo , Sesquiterpenos/metabolismo , Transdução de Sinais , Tiadiazóis/farmacologia , Fatores de Transcrição/genética , Xanthomonas/fisiologia , Fitoalexinas
7.
BMC Plant Biol ; 16: 60, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26940322

RESUMO

BACKGROUND: Plant immune responses can be induced by endogenous and exogenous signaling molecules. Recently, amino acids and their metabolites have been reported to affect the plant immune system. However, how amino acids act in plant defense responses has yet to be clarified. Here, we report that treatment of rice roots with amino acids such as glutamate (Glu) induced systemic disease resistance against rice blast in leaves. RESULTS: Treatment of roots with Glu activated the transcription of a large variety of defense-related genes both in roots and leaves. In leaves, salicylic acid (SA)-responsive genes, rather than jasmonic acid (JA) or ethylene (ET)-responsive genes, were induced by this treatment. The Glu-induced blast resistance was partially impaired in rice plants deficient in SA signaling such as NahG plants expressing an SA hydroxylase, WRKY45-knockdown, and OsNPR1-knockdown plants. The JA-deficient mutant cpm2 exhibited full Glu-induced blast resistance. CONCLUSIONS: Our results indicate that the amino acid-induced blast resistance partly depends on the SA pathway but an unknown SA-independent signaling pathway is also involved.


Assuntos
Aminoácidos/imunologia , Oryza/imunologia , Doenças das Plantas/imunologia , Perfilação da Expressão Gênica , Genes de Plantas , Ácido Glutâmico/imunologia , Ácido Glutâmico/metabolismo , Magnaporthe/imunologia , Ácido N-Acetilneuramínico/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Transdução de Sinais
8.
Plant Mol Biol ; 91(1-2): 81-95, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26879413

RESUMO

Membrane trafficking plays pivotal roles in many cellular processes including plant immunity. Here, we report the characterization of OsVAMP714, an intracellular SNARE protein, focusing on its role in resistance to rice blast disease caused by the fungal pathogen Magnaporthe oryzae. Disease resistance tests using OsVAMP714 knockdown and overexpressing rice plants demonstrated the involvement of OsVAMP714 in blast resistance. The overexpression of OsVAMP7111, whose product is highly homologous to OsVAMP714, did not enhance blast resistance to rice, implying a potential specificity of OsVAMP714 to blast resistance. OsVAMP714 was localized to the chloroplast in mesophyll cells and to the cellular periphery in epidermal cells of transgenic rice plant leaves. We showed that chloroplast localization is critical for the normal OsVAMP714 functioning in blast resistance by analyzing the rice plants overexpressing OsVAMP714 mutants whose products did not localize in the chloroplast. We also found that OsVAMP714 was located in the vacuolar membrane surrounding the invasive hyphae of M. oryzae. Furthermore, we showed that OsVAMP714 overexpression promotes leaf sheath elongation and that the first 19 amino acids, which are highly conserved between animal and plant VAMP7 proteins, are crucial for normal rice plant growths. Our studies imply that the OsVAMP714-mediated trafficking pathway plays an important role in rice blast resistance as well as in the vegetative growth of rice.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Transporte Proteico/fisiologia , Proteínas R-SNARE/metabolismo , Membrana Celular , Cloroplastos/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Predisposição Genética para Doença , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas R-SNARE/genética , Ácido Salicílico/farmacologia
9.
Physiol Plant ; 157(4): 469-78, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26806544

RESUMO

Climate change predictions forecast an increase in early spring frosts that could result in severe damage to perennial crops. For example, the Easter freeze of April 2007 left several states in the United States reporting a complete loss of that year's peach crop. The most susceptible organ to early frost damage in fruit trees is the carpel, particularly during bloom opening. In this study, we explored the use of a carpel-specific promoter (ZPT2-10) from petunia (Petunia hybrida var. Mitchell) to drive expression of the peach dehydrin PpDhn1. In peach, this gene is exceptionally responsive to low temperature but has not been observed to be expressed in carpels. This study examined carpel-specific properties of a petunia promoter driving the expression of the GUS gene (uidA) in transgenic Arabidopsis flowers and developed a carpel-specific ion leakage test to assess freezing tolerance. A homozygous Arabidopsis line (line 1-20) carrying the petunia ZPT2-10 promoter::PpDhn1 construct was obtained and freezing tolerance in the transgenic line was compared with an untransformed control. Overexpression of PpDhn1 in line 1-20 provided as much as a 1.9°C increase in carpel freezing tolerance as measured by electrolyte leakage.


Assuntos
Aclimatação , Arabidopsis/genética , Petunia/genética , Arabidopsis/fisiologia , Temperatura Baixa , Flores/genética , Flores/fisiologia , Expressão Gênica , Genes Reporter , Especificidade de Órgãos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Estresse Fisiológico
10.
Plant Biotechnol J ; 14(4): 1127-38, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26448265

RESUMO

WRKY45 is an important transcription factor in the salicylic acid signalling pathway in rice that mediates chemical-induced resistance against multiple pathogens. Its constitutive overexpression confers extremely strong resistance against Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae to rice, but has adverse effects on agronomic traits. Here, a new strategy to confer rice with strong disease resistance without any negative effects on agronomic traits was established by expressing WRKY45 under the control of pathogen-responsive promoters in combination with a translational enhancer derived from a 5'-untranslated region (UTR) of rice alcohol dehydrogenase (ADH). Rice promoters that responded to M. oryzae and X. oryzae pv. oryzae infections within 24 h were identified, and 2-kb upstream sequences from nine of them were isolated, fused to WRKY45 cDNA with or without the ADH 5'-UTR, and introduced into rice. Although pathogen-responsive promoters alone failed to confer effective disease resistance, the use of the ADH 5'-UTR in combination with them, in particular the PR1b and GST promoters, enhanced disease resistance. Field trials showed that overall, PR1b promoter-driven (with ADH 5'-UTR) lines performed the best and one had agronomic traits comparable to control untransformed rice. Thus, expressing WRKY45 under the control of the PR1b promoter with the ADH 5'-UTR is an excellent strategy to develop disease-resistant rice, and the line established could serve as a mother line for breeding disease-resistant rice.


Assuntos
Resistência à Doença/genética , Oryza/genética , Oryza/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Regiões 5' não Traduzidas , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Magnaporthe/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/patogenicidade
11.
PLoS Pathog ; 11(10): e1005231, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26485146

RESUMO

Plants, as sessile organisms, survive environmental changes by prioritizing their responses to the most life-threatening stress by allocating limited resources. Previous studies showed that pathogen resistance was suppressed under abiotic stresses. Here, we show the mechanism underlying this phenomenon. Phosphorylation of WRKY45, the central transcription factor in salicylic-acid (SA)-signalling-dependent pathogen defence in rice, via the OsMKK10-2-OsMPK6 cascade, was required to fully activate WRKY45. The activation of WRKY45 by benzothiadiazole (BTH) was reduced under low temperature and high salinity, probably through abscisic acid (ABA) signalling. An ABA treatment dephosphorylated/inactivated OsMPK6 via protein tyrosine phosphatases, OsPTP1/2, leading to the impaired activation of WRKY45 and a reduction in Magnaporthe oryzae resistance, even after BTH treatment. BTH induced a strong M. oryzae resistance in OsPTP1/2 knockdown rice, even under cold and high salinity, indicating that OsPTP1/2 is the node of SA-ABA signalling crosstalk and its down-regulation makes rice disease resistant, even under abiotic stresses. These results points to one of the directions to further improve crops by managing the tradeoffs between different stress responses of plants.


Assuntos
Resistência à Doença/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Oryza , Fosforilação , Doenças das Plantas , Fatores de Transcrição/metabolismo , Tirosina/metabolismo
12.
Plant J ; 84(6): 1100-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26506081

RESUMO

Rice (Oryza sativa) produces diterpenoid phytoalexins (DPs), momilactones and phytocassanes as major phytoalexins. Accumulation of DPs is induced in rice by blast fungus infection, copper chloride or UV light. Here, we describe a rice transcription factor named diterpenoid phytoalexin factor (DPF), which is a basic helix-loop-helix (bHLH) transcription factor. The gene encoding DPF is expressed mainly in roots and panicles, and is inducible in leaves by blast infection, copper chloride or UV. Expression of all DP biosynthetic genes and accumulation of momilactones and phytocassanes were remarkably increased and decreased in DPF over-expressing and DPF knockdown rice, respectively. These results clearly demonstrated that DPF positively regulates DP accumulation via transcriptional regulation of DP biosynthetic genes, and plays a central role in the biosynthesis of DPs in rice. Furthermore, DPF activated the promoters of COPALYL DIPHOSPHATE SYNTHASE2 (CPS2) and CYTOCHROME P450 MONOOXYGENASE 99A2 (CYP99A2), whose products are implicated in the biosynthesis of phytocassanes and momilactones, respectively. Mutations in the N-boxes in the CPS2 upstream region, to which several animal bHLH transcription factors bind, decreased CPS2 transcription, indicating that DPF positively regulates CPS2 transcription through the N-boxes. In addition, DPF partly regulates CYP99A2 through the N-box. This study demonstrates that DPF acts as a master transcription factor in DP biosynthesis.


Assuntos
Diterpenos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Regulação para Cima , Fitoalexinas
13.
Plant Biotechnol J ; 13(6): 753-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25487714

RESUMO

The rice transcription factor WRKY45 plays a central role in the salicylic acid signalling pathway and mediates chemical-induced resistance to multiple pathogens, including Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Previously, we reported that rice transformants overexpressing WRKY45 driven by the maize ubiquitin promoter were strongly resistant to both pathogens; however, their growth and yield were negatively affected because of the trade-off between the two conflicting traits. Also, some unknown environmental factor(s) exacerbated this problem. Here, we report the development of transgenic rice lines resistant to both pathogens and with agronomic traits almost comparable to those of wild-type rice. This was achieved by optimizing the promoter driving WRKY45 expression. We isolated 16 constitutive promoters from rice genomic DNA and tested their ability to drive WRKY45 expression. Comparisons among different transformant lines showed that, overall, the strength of WRKY45 expression was positively correlated with disease resistance and negatively correlated with agronomic traits. We conducted field trials to evaluate the growth of transgenic and control lines. The agronomic traits of two lines expressing WRKY45 driven by the OsUbi7 promoter (PO sUbi7 lines) were nearly comparable to those of untransformed rice, and both lines were pathogen resistant. Interestingly, excessive WRKY45 expression rendered rice plants sensitive to low temperature and salinity, and stress sensitivity was correlated with the induction of defence genes by these stresses. These negative effects were barely observed in the PO sUbi7 lines. Moreover, their patterns of defence gene expression were similar to those in plants primed by chemical defence inducers.


Assuntos
Genes de Plantas , Magnaporthe/patogenicidade , Oryza/microbiologia , Fatores de Transcrição/genética , Xanthomonas/patogenicidade , Oryza/genética , Regiões Promotoras Genéticas
14.
Front Plant Sci ; 5: 630, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25431577

RESUMO

Infectious diseases cause huge crop losses annually. In response to pathogen attacks, plants activate defense systems that are mediated through various signaling pathways. The salicylic acid (SA) signaling pathway is the most powerful of these pathways. Several regulatory components of the SA signaling pathway have been identified, and are potential targets for genetic manipulation of plants' disease resistance. However, the resistance associated with these regulatory components is often accompanied by fitness costs; that is, negative effects on plant growth and crop yield. Chemical defense inducers, such as benzothiadiazole and probenazole, act on the SA pathway and induce strong resistance to various pathogens without major fitness costs, owing to their 'priming effect.' Studies on how benzothiadiazole induces disease resistance in rice have identified WRKY45, a key transcription factor in the branched SA pathway, and OsNPR1/NH1. Rice plants overexpressing WRKY45 were extremely resistant to rice blast disease caused by the fungus Magnaporthe oryzae and bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo), the two major rice diseases. Disease resistance is often accompanied by fitness costs; however, WRKY45 overexpression imposed relatively small fitness costs on rice because of its priming effect. This priming effect was similar to that of chemical defense inducers, although the fitness costs were amplified by some environmental factors. WRKY45 is degraded by the ubiquitin-proteasome system, and the dual role of this degradation partly explains the priming effect. The synergistic interaction between SA and cytokinin signaling that activates WRKY45 also likely contributes to the priming effect. With a main focus on these studies, I review the current knowledge of SA-pathway-dependent defense in rice by comparing it with that in Arabidopsis, and discuss potential strategies to develop disease-resistant rice using signaling components.

15.
Plant Mol Biol ; 86(1-2): 171-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25033935

RESUMO

Plant activators such as benzothiadiazole (BTH) protect plants against diseases by priming the salicylic acid (SA) signaling pathway. In rice, the transcription factor WRKY45 plays a central role in this process. To investigate the mechanism involved in defense-priming by BTH and the role of WRKY45 in this process, we analyzed the transcripts of biosynthetic genes for diterpenoid phytoalexins (DPs) during the rice-Magnaporthe oryzae interaction. The DP biosynthetic genes were barely upregulated in BTH-treated rice plants, but were induced rapidly after M. oryzae infection in a WRKY45-dependent manner. These results indicate that the DP biosynthetic genes were primed by BTH through WRKY45. Rapid induction of the DP biosynthetic genes was also observed after M. oryzae infection to WRKY45-overexpressing (WRKY45-ox) plants. The changes in gene transcription resulted in accumulation of DPs in WRKY45-ox and BTH-pretreated rice after M. oryzae infection. Previously, we reported that cytokinins (CKs), especially isopentenyladenines, accumulated in M. oryzae-infected rice. Here, we show that DP biosynthetic genes are regulated by the SA/CK synergism in a WRKY45-dependent manner. Together, we propose that CK plays a role in mediating the signal of M. oryzae infection to trigger the induction of DP biosynthetic genes in BTH-primed plants.


Assuntos
Citocininas/fisiologia , Diterpenos/metabolismo , Oryza/genética , Proteínas de Plantas/fisiologia , Sesquiterpenos/metabolismo , Fatores de Transcrição/fisiologia , Citocininas/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fitoalexinas
16.
BMC Plant Biol ; 13: 150, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24093634

RESUMO

BACKGROUND: The rice transcription factor WRKY45 plays a crucial role in salicylic acid (SA)/benzothiadiazole (BTH)-induced disease resistance. Its knockdown severely reduces BTH-induced resistance to the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). Conversely, overexpression of WRKY45 induces extremely strong resistance to both of these pathogens. To elucidate the molecular basis of WRKY45-dependent disease resistance, we analyzed WRKY45-regulated gene expression using rice transformants and a transient gene expression system. RESULTS: We conducted a microarray analysis using WRKY45-knockdown (WRKY45-kd) rice plants, and identified WRKY45-dependent genes among the BTH-responsive genes. The BTH-responsiveness of 260 genes was dependent on WRKY45. Among these, 220 genes (85%), many of which encoded PR proteins and proteins associated with secondary metabolism, were upregulated by BTH. Only a small portion of these genes overlapped with those regulated by OsNPR1/NH1, supporting the idea that the rice SA pathway branches into WRKY45- regulated and OsNPR1/NH1-regulated subpathways. Dexamethazone-induced expression of myc-tagged WRKY45 in rice immediately upregulated transcription of endogenous WRKY45 and genes encoding the transcription factors WRKY62, OsNAC4, and HSF1, all of which have been reported to have defense-related functions. This was followed by upregulation of defense genes encoding PR proteins and secondary metabolic enzymes. Many of these genes were also induced after M. oryzae infection. Their temporal transcription patterns were consistent with those after dexamethazone-induced WRKY45 expression. In a transient expression system consisting of particle bombardment of rice coleoptiles, WRKY45 acted as an effector to trans-activate reporter genes in which the luciferase coding sequence was fused to upstream and intragenic sequences of WRKY62 and OsNAC4. Trans-activation of transcription occurred through a W-box-containing sequence upstream of OsNAC4 and mutations in the W-boxes abolished the trans-activation. CONCLUSIONS: These data suggest a role of WRKY45 in BTH-induced disease resistance as a master regulator of the transcriptional cascade regulating defense responses in one of two branches in the rice SA pathway.


Assuntos
Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Genoma de Planta/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
17.
J Exp Bot ; 64(16): 5085-97, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24043853

RESUMO

OsWRKY76 encodes a group IIa WRKY transcription factor of rice. The expression of OsWRKY76 was induced within 48h after inoculation with rice blast fungus (Magnaporthe oryzae), and by wounding, low temperature, benzothiadiazole, and abscisic acid. Green fluorescent protein-fused OsWRKY76 localized to the nuclei in rice epidermal cells. OsWRKY76 showed sequence-specific DNA binding to the W-box element in vitro and exhibited W-box-mediated transcriptional repressor activity in cultured rice cells. Overexpression of OsWRKY76 in rice plants resulted in drastically increased susceptibility to M. oryzae, but improved tolerance to cold stress. Microarray analysis revealed that overexpression of OsWRKY76 suppresses the induction of a specific set of PR genes and of genes involved in phytoalexin synthesis after inoculation with blast fungus, consistent with the observation that the levels of phytoalexins in the transgenic rice plants remained significantly lower than those in non-transformed control plants. Furthermore, overexpression of OsWRKY76 led to the increased expression of abiotic stress-associated genes such as peroxidase and lipid metabolism genes. These results strongly suggest that OsWRKY76 plays dual and opposing roles in blast disease resistance and cold tolerance.


Assuntos
Oryza/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Proteínas Repressoras/metabolismo , Temperatura Baixa , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Magnaporthe/fisiologia , Oryza/imunologia , Oryza/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas Repressoras/genética , Estresse Fisiológico , Transcrição Gênica
18.
Proc Natl Acad Sci U S A ; 110(23): 9577-82, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23696671

RESUMO

Panicle blast 1 (Pb1) is a panicle blast resistance gene derived from the indica rice cultivar "Modan." Pb1 encodes a coiled-coil-nucleotide-binding site-leucine-rich repeat (CC-NB-LRR) protein and confers durable, broad-spectrum resistance to Magnaporthe oryzae races. Here, we investigated the molecular mechanisms underlying Pb1-mediated blast resistance. The Pb1 protein interacted with WRKY45, a transcription factor involved in induced resistance via the salicylic acid signaling pathway that is regulated by the ubiquitin proteasome system. Pb1-mediated panicle blast resistance was largely compromised when WRKY45 was knocked down in a Pb1-containing rice cultivar. Leaf-blast resistance by Pb1 overexpression (Pb1-ox) was also compromised in WRKY45 knockdown/Pb1-ox rice. Blast infection induced higher accumulation of WRKY45 in Pb1-ox than in control Nipponbare rice. Overexpression of Pb1-Quad, a coiled-coil domain mutant that had weak interaction with WRKY45, resulted in significantly weaker blast resistance than that of wild-type Pb1. Overexpression of Pb1 with a nuclear export sequence failed to confer blast resistance to rice. These results suggest that the blast resistance of Pb1 depends on its interaction with WRKY45 in the nucleus. In a transient system using rice protoplasts, coexpression of Pb1 enhanced WRKY45 accumulation and increased WRKY45-dependent transactivation activity, suggesting that protection of WRKY45 from ubiquitin proteasome system degradation is possibly involved in Pb1-dependent blast resistance.


Assuntos
Resistência à Doença/genética , Magnaporthe , Oryza/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fracionamento Celular , Técnicas de Silenciamento de Genes , Luciferases , Oryza/microbiologia , Proteínas de Plantas/genética , Mapas de Interação de Proteínas , Transdução de Sinais/genética
19.
Plant Signal Behav ; 8(6): e24510, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23603961

RESUMO

WRKY45 transcription factor is a central regulator of disease resistance mediated by the salicylic acid (SA) signaling pathway in rice. SA-activated WRKY45 protein induces the accumulation of its own mRNA. However, the mechanism underlying this regulation is still unknown. Here, we report three lines of evidence showing that a mitogen-activated protein kinase (MAPK) cascade is involved in this regulation. An inhibitor of MAPK kinase (MAPKK) suppressed the increase in WRKY45 transcript level in response to SA. Two MAPKs, OsMPK4 and OsMPK6, phosphorylated WRKY45 protein in vitro. The activity of OsMPK6 was rapidly upregulated by SA treatment in rice cells. These results suggest that WRKY45 is regulated by MAPK-dependent phosphorylation in the SA pathway.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Fosforilação , Ácido Salicílico/metabolismo , Transdução de Sinais
20.
Mol Plant Microbe Interact ; 26(3): 287-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23234404

RESUMO

Hormone crosstalk is pivotal in plant-pathogen interactions. Here, we report on the accumulation of cytokinins (CK) in rice seedlings after infection of blast fungus Magnaporthe oryzae and its potential significance in rice-M. oryzae interaction. Blast infection to rice seedlings increased levels of N(6)-(Δ(2)-isopentenyl) adenine (iP), iP riboside (iPR), and iPR 5'-phosphates (iPRP) in leaf blades. Consistent with this, CK signaling was activated around the infection sites, as shown by histochemical staining for ß-glucuronidase activity driven by a CK-responsive OsRR6 promoter. Diverse CK species were also detected in the hyphae (mycelium), conidia, and culture filtrates of blast fungus, indicating that M. oryzae is capable of production as well as hyphal secretion of CK. Co-treatment of leaf blades with CK and salicylic acid (SA), but not with either one alone, markedly induced pathogenesis-related genes OsPR1b and probenazole-induced protein 1 (PBZ1). These effects were diminished by RNAi-knockdown of OsNPR1 or WRKY45, the key regulators of the SA signaling pathway in rice, indicating that the effects of CK depend on these two regulators. Taken together, our data imply a coevolutionary rice-M. oryzae interaction, wherein M. oryzae probably elevates rice CK levels for its own benefits such as nutrient translocation. Rice plants, on the other hand, sense it as an infection signal and activate defense reactions through the synergistic action with SA.


Assuntos
Citocininas/metabolismo , Magnaporthe/metabolismo , Oryza/imunologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/farmacologia , Citocininas/análise , Citocininas/farmacologia , Sinergismo Farmacológico , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Hifas , Ácidos Indolacéticos/metabolismo , Magnaporthe/fisiologia , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/farmacologia , Imunidade Vegetal , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Interferência de RNA , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/imunologia , Plântula/metabolismo , Transdução de Sinais , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA