Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 8(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878198

RESUMO

The subcutaneous transplantation of microencapsulated islets has been extensively studied as a therapeutic approach for type I diabetes. However, due to the lower vascular density and strong inflammatory response in the subcutaneous area, there have been few reports of successfully normalized blood glucose levels. To address this issue, we developed mosaic-like aggregates comprised of mesenchymal stem cells (MSCs) and recombinant peptide pieces called MSC CellSaics, which provide a continuous release of angiogenic factors and anti-inflammatory cytokines. Our previous report revealed that the diabetes of immunodeficient diabetic model mice was reversed by the subcutaneous co-transplantation of the MSC CellSaics and rat islets. In this study, we focused on the development of immune-isolating microcapsules to co-encapsulate the MSC CellSaics and rat islets, and their therapeutic efficiency via subcutaneous transplantation into immunocompetent diabetic model mice. As blood glucose level was monitored for 28 days following transplantation, the normalization rate of the new immuno-isolating microcapsules was confirmed to be significantly higher than those of the microcapsules without the MSC CellSaics, and the MSC CellSaics transplanted outside the microcapsules (p < 0.01). Furthermore, the number of islets required for the treatment was reduced. In the stained sections, a larger number/area of blood vessels was observed around the new immuno-isolating microcapsules, which suggests that angiogenic factors secreted by the MSC CellSaics through the microcapsules function locally for their enhanced efficacy.

2.
J Phys Chem A ; 118(37): 8298-308, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24725191

RESUMO

Organoeuropium sandwich clusters, comprising europium (Eu) and 1,3,5,7-cyclooctatetraene (COT) (Eu(n)(COT)(m)), were produced in the gas phase using a laser vaporization synthesis method. Photoionization mass spectra revealed an exclusive Eu(n)(COT)(m) formation with three compositions: m = n + 1, m = n, and m = n - 1, which, we propose, correspond to full-sandwich, half-sandwich, and inverted-sandwich structures, respectively. The charge distributions, metal-ligand bonding characteristics, and electronic structures of the clusters were comprehensively investigated by photoionization measurements of Eu(n)(COT)(m) neutrals and by photoelectron spectroscopy of Eu(n)(COT)(m)(-) and isoelectronic Ba(n)(COT)(m)(-) anions. The results confirmed that (1) highly ionic metal-ligand bonding is formed between Eu(2+) and COT(2-) within the sandwich structure (at the termini, ionic forms are Eu(+) and COT(-)) and (2) size dependence of orbital energy can be explained by the Coulombic interaction of simple point charge models between the detaching electrons and dipoles/quadrupoles. When the terminus of the sandwich clusters is Eu(2+), COT(2-), or Eu(0), the orbital energy of the electron detachment channel at the opposite terminus strongly depends on the cluster size. In this case, the molecular stack behaves as a one-dimensionally aligned dipole; otherwise, it behaves as a quadrupole, and the relationship between cluster size and electron detachment energy is much weaker. The study also reports on the 4f orbital energy in Eu ions and the formation mechanism of organoeuropium sandwich nanowires up to 12 nm in length. The nanowires are formed by successive charge transfer at the terminal part, Eu(+) and COT(-), which reduces the ionization energy and increases the electron affinity, respectively.

3.
J Phys Chem A ; 109(11): 2476-86, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16833549

RESUMO

We have measured the photoelectron spectra of the multiple-decker 1:1 sandwich clusters of Eu(n)(COT)n- (n = 1-4; COT = 1,3,5,7-cyclooctatetraene), synthesized in the gas phase, and studied theoretically the bonding scheme, charge distribution, valence orbital energies, and photodetachment energies. We calculated the ground electronic state X- and the first excited electronic state A-, both of which have strong ionic bonding and a characteristic charge distribution. Moreover, we found that the valence orbital energies of Eu (6s) and COT (L delta) depend strongly on cluster size and their positions in the clusters. With the calculated vertical detachment energies for these valence orbitals, we assigned the peaks in the experimental photoelectron spectra and analyzed the origin of their interesting behavior by employing simple point charge models. From these analyses, it became clear that the characteristic behavior of the spectra is due to the strong ionic bonding and the charge distribution. In addition, using the point charge models, we estimated the vertical detachment energies of the one-dimensional polymer [Eu(COT)]infinity-.

4.
J Phys Chem A ; 109(1): 9-12, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16839084

RESUMO

A molecular beam of europium-cyclooctatetraene sandwich nanowires Eu(n)()(COT)(m)() was produced by a laser vaporization synthesis method. The formation mechanism of the nanowires was quantitatively revealed by photoelectron and photoionization spectroscopies of the Eu-COT species, together with supporting theoretical calculations. From these results, it is confirmed that growth processes extending the length of Eu-COT nanowires involve a series of elementary reactions in which efficient charge transfer occurs at the terminal reaction sites. In every elementary step, the reaction proceeds between one reactant having low ionization energy and the other reactant having high electron affinity, probably via a "harpoon" mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA