Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(2): e2204746, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373679

RESUMO

Optical transparency is highly desirable in bioelectronic sensors because it enables multimodal optical assessment during electronic sensing. Ultrathin (<5 µm) organic electrochemical transistors (OECTs) can be potentially used as a highly efficient bioelectronic transducer because they demonstrate high transconductance during low-voltage operation and close conformability to biological tissues. However, the fabrication of fully transparent ultrathin OECTs remains a challenge owing to the harsh etching processes of nanomaterials. In this study, fully transparent, ultrathin, and flexible OECTs are developed using additive integration processes of selective-wetting deposition and thermally bonded lamination. These processes are compatible with Ag nanowire electrodes and conducting polymer channels and realize unprecedented flexible OECTs with high visible transmittance (>90%) and high transconductance (≈1 mS) in low-voltage operations (<0.6 V). Further, electroencephalogram acquisition and nitrate ion sensing are demonstrated in addition to the compatibility of simultaneous assessments of optical blood flowmetry when the transparent OECTs are worn, owing to the transparency. These feasibility demonstrations show promise in contributing to human stress monitoring in bioelectronics.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Humanos , Polímeros , Eletrodos
2.
Adv Mater ; 32(15): e1902684, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31782576

RESUMO

Mechanically and visually imperceptible sensor sheets integrated with lightweight wireless loggers are employed in ultimate flexible hybrid electronics (FHE) to reduce vital stress/nervousness and monitor natural biosignal responses. The key technologies and applications for conceptual sensor system fabrication are reported, as exemplified by the use of a stretchable sensor sheet completely conforming to an individual's body surface to realize a low-noise wireless monitoring system (<1 µV) that can be attached to the human forehead for recording electroencephalograms. The above system can discriminate between Alzheimer's disease and the healthy state, thus offering a rapid in-home brain diagnosis possibility. Moreover, the introduction of metal nanowires to improve the transparency of the biocompatible sensor sheet allows one to wirelessly acquire electrocorticograms of nonhuman primates and simultaneously offers optogenetic stimulation such as toward-the-brain-machine interface under free movement. Also discussed are effective methods of improving electrical reliability, biocompatibility, miniaturization, etc., for metal nanowire based tracks and exploring the use of an organic amplifier as an important component to realize a flexible active probe with a high signal-to-noise ratio. Overall, ultimate FHE technologies are demonstrated to achieve efficient closed-loop systems for healthcare management, medical diagnostics, and preclinical studies in neuroscience and neuroengineering.


Assuntos
Metais/química , Monitorização Fisiológica/métodos , Nanofios/química , Tecnologia sem Fio , Animais , Encefalopatias/diagnóstico , Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Monitorização Fisiológica/instrumentação , Dispositivos Eletrônicos Vestíveis
3.
Nanotechnology ; 30(37): 37LT03, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31212258

RESUMO

One-dimensional metal nanowires offer great potential in printing transparent electrodes for next-generation optoelectronic devices such as flexible displays and flexible solar cells. Printing fine patterns of metal nanowires with widths <100 µm is critical for their practical use in the devices. However, the fine printing of metal nanowires onto polymer substrates remains a major challenge owing to their unintended alignment. This paper reports on a fine-printing method for transparent silver nanowires (AgNWs) electrodes miniaturized to a width of 50 µm on ultrathin (1 µm) polymer substrate, giving a high yield of >90%. In this method, the AgNW dispersion, which is swept by a glass rod, is spontaneously deposited to the hydrophilic areas patterned on a hydrophobic-coated substrate. The alignment and accumulation of AgNWs at the pattern periphery are enhanced by employing a high sweeping rate of >3.2 mm s-1, improving electrical conductivity and pattern definition. The more aligned and more accumulated AgNWs lower the sheet resistance by a factor of up to 6.8. In addition, a high pattern accuracy ≤ 3.6 µm, which is the deviation from the pattern designs, is achieved. Quantitative analyses are implemented on the nanowire alignment to understand the nanowire geometry. This fine-printing method of the AgNW electrodes will provide great opportunities for realizing flexible and high-performance optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA