Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 701: 149557, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310689

RESUMO

The ubiquitin system plays pivotal roles in diverse cellular processes, including signal transduction, transcription and translation, organelle quality control, and protein degradation. Recent investigations have revealed the regulatory influence of ubiquitin systems on RNA metabolism. Previously, we reported that the deubiquitinating enzyme, ubiquitin specific peptidase 15 (USP15), promotes deubiquitination of terminal uridylyl transferase 1 (TUT1), a key regulator within the U4/U6 spliceosome, thereby instigating significant alterations in global RNA splicing [1]. In this study, we report that ubiquitin specific peptidase 4 (USP4), a homologous protein to USP15, also exerts control over the ubiquitination status of TUT1. Analogous to USP15, the expression of USP4 results in a reduction of TUT1 ubiquitination. Furthermore, squamous cell carcinoma antigen recognized by T-cells 3 (SART3) collaborates in enhancing the deubiquitinating activity of USP4 towards TUT1. A crucial revelation is that USP4 orchestrates the subnuclear relocation of TUT1 from the nucleolus to the nucleoplasm and facilitates the stability of U6 small nuclear RNA (snRNA). Notably, USP4 has a more profound effect on TUT1 redistribution compared to USP15. Our findings suggest that USP4 intricately modulates the ubiquitination status of TUT1, thereby exerting pronounced effects on the spliceosome functions.


Assuntos
Nucleotidiltransferases , Proteínas de Ligação a RNA , Spliceossomos , Proteases Específicas de Ubiquitina , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/metabolismo , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação , Humanos , Nucleotidiltransferases/metabolismo
2.
Biology (Basel) ; 12(8)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37626977

RESUMO

The central nervous system (CNS) plays a crucial role in regulating bodily functions by sensing and integrating environmental cues and maintaining proper physiological conditions. Recent research has revealed that CNS functions are closely coordinated with the immune system. As even minor disturbances of the immune system in the CNS can lead to various dysfunctions, diseases, or even death, it is highly specialized and segregated from that in peripheral regions. Microglia in the parenchyma and macrophages at the interface between the CNS and peripheral regions are essential immune cells in the CNS that monitor environmental changes. Recent omics analyses have revealed that these cells exhibit highly heterogeneous populations. In this review, we summarize the functions and diversity of microglia in the brain parenchyma and those of macrophages in the border regions, such as the meninges, perivascular spaces, and choroid plexus.

3.
Neural Regen Res ; 18(7): 1499-1500, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36571352
4.
Sci Rep ; 12(1): 11891, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831437

RESUMO

Hevin is a secreted extracellular matrix protein that is encoded by the SPARCL1 gene. Recent studies have shown that Hevin plays an important role in regulating synaptogenesis and synaptic plasticity. Mutations in the SPARCL1 gene increase the risk of autism spectrum disorder (ASD). However, the molecular basis of how mutations in SPARCL1 increase the risk of ASD is not been fully understood. In this study, we show that one of the SPARCL1 mutations associated with ASD impairs normal Hevin secretion. We identified Hevin mutants lacking the EF-hand motif through analyzing ASD-related mice with vulnerable spliceosome functions. Hevin deletion mutants accumulate in the endoplasmic reticulum (ER), leading to the activation of unfolded protein responses. We also found that a single amino acid substitution of Trp647 with Arg in the EF-hand motif associated with a familial case of ASD causes a similar phenotype in the EF-hand deletion mutant. Importantly, molecular dynamics (MD) simulation revealed that this single amino acid substitution triggers exposure of a hydrophobic amino acid to the surface, increasing the binding of Hevin with molecular chaperons, BIP. Taken together, these data suggest that the integrity of the EF-hand motif in Hevin is crucial for proper folding and that ASD-related mutations impair the export of Hevin from the ER. Our data provide a novel mechanism linking a point mutation in the SPARCL1 gene to the molecular and cellular characteristics involved in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Proteínas de Ligação ao Cálcio/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Mutação
5.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32868309

RESUMO

Microglia are resident macrophages that are critical for brain development and homeostasis. Microglial morphology is dynamically changed during postnatal stages, leading to regulating synaptogenesis and synapse pruning. Moreover, it has been well known that the shape of microglia is also altered in response to the detritus of the apoptotic cells and pathogens such as bacteria and viruses. Although the morphologic changes are crucial for acquiring microglial functions, the exact mechanism which controls their morphology is not fully understood. Here, we report that the FAT atypical cadherin family protein, FAT3, regulates the morphology of microglial cell line, BV2. We found that the shape of BV2 becomes elongated in a high-nutrient medium. Using microarray analysis, we identified that FAT3 expression is induced by culturing with a high-nutrient medium. In addition, we found that purinergic analog, hypoxanthine, promotes FAT3 expression in BV2 and mouse primary microglia. FAT3 expression induced by hypoxanthine extends the time of sustaining the elongated forms in BV2. These data suggest that the hypoxanthine-FAT3 axis is a novel pathway associated with microglial morphology. Our data provide a possibility that FAT3 may control microglial transitions involved in their morphologic changes during the postnatal stages in vivo.


Assuntos
Caderinas , Microglia , Animais , Linhagem Celular , Macrófagos , Camundongos , Análise em Microsséries
6.
Mol Cell Biol ; 40(21)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32839293

RESUMO

Precise regulation of RNA metabolism is crucial for dynamic gene expression and controlling cellular functions. In the nervous system, defects in RNA metabolism are implicated in the disturbance of brain homeostasis and development. Here, we report that deubiquitinating enzyme, ubiquitin specific peptidase 15 (USP15), deubiquitinates terminal uridylyl transferase 1 (TUT1) and changes global RNA metabolism. We found that the expression of USP15 redistributes TUT1 from the nucleolus to nucleoplasm, resulting in the stabilization of U6 snRNA. We also found that lack of the Usp15 gene induces an impairment in motor ability with an unconventional cerebellar formation. Moreover, inhibition of the USP15-TUT1 cascade triggered mild and chronic endoplasmic reticulum (ER) stress. Therefore, our results suggest that USP15 is crucial for mRNA metabolism and maintains a healthy brain. These findings provide a possibility that disturbance of the USP15-TUT1 cascade induces chronic and mild ER stress, leading to an acceleration of the neurodegenerative phenotype.


Assuntos
Cerebelo/fisiologia , RNA/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Estresse do Retículo Endoplasmático/genética , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Splicing de RNA , RNA Nuclear Pequeno/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA