Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 460: 132502, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703726

RESUMO

The limited existing research on the accumulation of hazardous chlorinated and brominated polycyclic aromatic hydrocarbons (ClPAHs and BrPAHs) in micro-mesoplastics (mMPs) motivated this investigation. We collected mMPs from the coastal environments of Sri Lanka and Japan. Out of 75 target compounds analyzed, 61 were detected, with total parent PAH concentrations reaching 16,300 and 1770 ng/g plastic in Sri Lanka and Japan, respectively. The total parent PAH concentrations in mMPs from the southern Sri Lankan coastline were relatively higher than those from the eastern coastline. Phenanthrene and naphthalene were the dominant parent PAH congeners in most mMP samples. Chlorinated pyrenes and brominated naphthalene were predominant among halogenated PAHs. The estimated toxic equivalency quotient (TEQ) ranged from 0.67 to 1057 ng-TEQ/g plastic, with the highest levels observed in polystyrene (PS) particles from the southern Sri Lankan coast. Benzo[a]pyrene and dibenzo[a,h]anthracene exhibited elevated TEQ for parent PAHs, whereas dichloropyrene, and dibromopyrene represented the highest TEQs for ClPAHs and BrPAHs, respectively. The data evidenced that several HPAH congeners can increase the PAH-like toxicity (∼86%) in mMPs. This study provides insights into the accumulation of parent and halogenated PAHs in mMPs, highlighting their potential combined implications in marine and terrestrial ecosystems.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Microplásticos/toxicidade , Ecossistema , Naftalenos
2.
ACS Appl Mater Interfaces ; 15(1): 751-760, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580372

RESUMO

Lithium garnet Li7La3Zr2O12 (LLZO), with high ionic conductivity and chemical stability against a Li metal anode, is considered one of the most promising solid electrolytes for lithium-sulfur batteries. However, an infinite charge time resulting in low capacity has been observed in Li-S cells using Ta-doped LLZO (Ta-LLZO) as a solid electrolyte. It was observed that this cell failure is correlated with lanthanum segregation to the surface of Ta-LLZO that reacts with a sulfur cathode. We demonstrated this correlation by using lanthanum excess and lanthanum deficient Ta-LLZO as the solid electrolyte in Li-S cells. To resolve this challenge, we physically separated the sulfur cathode and LLZO using a poly(ethylene oxide) (PEO)-based buffer interlayer. With a thin bilayer of LLZO and the stabilized sulfur cathode/LLZO interface, the hybridized Li-S batteries achieved a high initial discharge capacity of 1307 mA h/g corresponding to an energy density of 639 W h/L and 134 W h/kg under a high current density of 0.2 mA/cm2 at room temperature without any indication of a polysulfide shuttle. By simply reducing the LLZO dense layer thickness to 10 µm as we have demonstrated before, a significantly higher energy density of 1308 W h/L and 257 W h/kg is achievable. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the PEO-based interlayer, which physically separates the sulfur cathode and LLZO, is both chemically and electrochemically stable with LLZO. In addition, the PEO-based interlayer can adapt to the stress/strain associated with sulfur volume expansion during lithiation.

3.
J Mater Sci ; 53(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-33060866

RESUMO

The electrochemical performance and microstructure of positive electrodes are intimately linked. As such, developing batteries resistance to capacity and voltage fade requires understanding these underlying structure-properties relationships and their evolution with operation. Epitaxial films of a Li-rich manganese-nickel- cobalt oxide cathode material were deposited on (100) and (111) orientated SrRuO3/SrTiO3 substrates. Cyclic voltammetry and impedance spectroscopy tracked the response of these positive electrode materials, while the microstructure of the pristine and cycled films was characterized using transmission electron microscopy. Energy-dispersive X-ray spectroscopy identifies compositional fluctuations in as-deposited films. Phase transformations and dissolution were observed after electrochemical testing. There is a correlation between both local composition and substrate orientation (i.e., surface faceting) and what degradation pathways are active. Regions with comparatively higher concentrations of Ni and Co were more resistant to dissolution and unfavorable phase transformations than those with relatively more Mn. As such, a global composition metric may not be an accurate predictor of degradation and performance. Rather possessing the synthetic ability to engineer the chemical profile as well as characterizing it, pose a challenge and opportunity.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33060869

RESUMO

Due to the directional dependence of physical properties, it is advantageous to grow and then study materials in specific orientations. Films of battery materials grown in epitaxy offers the possibility to gain new insight into the role of physical structure on electrochemical behaviors. Here we demonstrate the growth, testing, and characterization of monoclinic-phase (space group C2/m) Li-Mn-Ni-Co-O epitaxial films. The monoclinic phase is a layered structure and as such lithium diffusion is favored along specific crystallographic directions. Films were grown by pulsed laser deposition onto SrRuO3/SrTiO3 substrates with (001) and (111) orientations. Cyclic voltammetry measured the response of these positive electrode materials, while the film structure was characterized using scanning transmission electron microscopy. A combination of imaging and diffraction identifies the presence of orientational variants. Variants disrupt the orientation anisotropy expected of these layered materials when grown in epitaxy, thereby masking differences in electrochemical behavior as a function of substrate orientation. Learning to control the domain structure now presents itself as a challenge to realize the potential of low symmetry battery materials grown in epitaxy on high symmetry substrates.

5.
ACS Appl Mater Interfaces ; 8(10): 6727-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26911456

RESUMO

The evolution of interface between the epitaxial thin film LiCoO2 (LCO) electrode and liquid electrolyte and inside the LCO film during electrochemical cycling has been analyzed by high resolution scanning transmission electron microscopy. Relaxation of sharp translational domain boundaries with mismatched layers of CoO2 octahedra occurs during cycling and results in formation of continuous CoO2 layers across the boundaries. The original trigonal layered structure of LiCoO2 tends to change into a spinel structure at the electrode/electrolyte interface after significant extraction of Li from LCO. This change is more pronounced at 4.2 V peak of CV, indicating lower stability of the layered LCO structure near its surface after Li is extracted above 60%. The transformed structure is identified to be close to Co3O4, with Co both on tetrahedral and octahedral sites, rather than to LiCo2O4 as it was suggested in earlier publications. Electron energy-loss spectroscopy measurements also show that Co ions oxidation state is reduced to mixed valence state Co(2+)/Co(3+) during the structure changes to spinel rather than oxidized.

6.
J Electrochem Soc ; 163(6): A1010-A1012, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28690337

RESUMO

The development of Li focused ion beams (Li-FIB) enables controlled Li ion insertion into materials with nanoscale resolution. We take the first step toward establishing the relevance of the Li-FIB for studies of ion dynamics in electrochemically active materials by comparing FIB lithiation with conventional electrochemical lithiation of isolated ß-Sn microspheres. Samples are characterized by cross-sectioning with Ga FIB and imaging via electron microscopy. The Li-FIB and electrochemical lithiated Sn exhibit similarities that suggest that the Li-FIB can be a powerful tool for exploring dynamical Li ion-material interactions at the nanoscale in a range of battery materials.

7.
ACS Appl Mater Interfaces ; 7(15): 7901-11, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25812439

RESUMO

Epitaxial LiCoO2 (LCO) thin films of different orientations were fabricated by pulsed laser deposition (PLD) in order to model single-crystal behavior during electrochemical reaction. This paper demonstrates that deposition of conductive SrRuO3 between a SrTiO3 (STO) substrate and an LCO film allows (1) epitaxial growth of LCO with orientation determined by STO and (2) electrochemical measurements, such as cyclic voltammetry and impedance spectroscopy. Scanning transmission electron microscopy (S/TEM and SEM) has demonstrated an orientation relationship between LCO and STO of three orientations, (111), (110) and (100), and identified a LCO/electrolyte surface as consisting of two crystallographic facets of LCO, (001) and {104}. The difference in the orientation of LCO accounts for the difference in the exposed area of {104} planes to the electrolyte, where lithium ions have easy access to fast diffusion planes. The resistance for lithium ion transfer measured by electrochemical impedance spectroscopy had inverse correlation with exposed area of {104} plane measured by TEM. Chemical diffusivity of lithium ions in LCO was measured by fitting electrochemical impedance spectroscopy data to a modified Randles equivalent circuit and allowed us to determine its dependence on film orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA