RESUMO
If dark matter (DM) consists of primordial black holes (PBHs) and particles simultaneously, PBHs are generically embedded within particle DM halos. Such "dressed PBHs" (dPBHs) are subject to modified constraints compared to PBHs and can contribute to significant DM abundance in the mass range 10^{-1}-10^{2}M_{â}. We show that diffractive lensing of chirping gravitational waves from binary mergers can not only discover, but can also identify dPBH lenses and discriminate them from bare PBHs on the event-by-event basis, with potential to definitively establish the coexistence of subdominant PBHs and particle DM.
RESUMO
Beyond-Standard-Model extensions of QCD could result in quark and gluon confinement occurring well above at temperature around the GeV scale. These models can also alter the order of the QCD phase transition. Therefore, the enhanced production of primordial black holes (PBHs) that can accompany the change in relativistic degrees of freedom at the QCD transition could favor the production of PBHs with mass scales smaller than the Standard Model QCD horizon scale. Consequently, and unlike PBHs associated with a standard GeV-scale QCD transition, such PBHs can account for all the dark matter abundance in the unconstrained asteroid-mass window. This links beyond-Standard-Model modifications of QCD physics over a broad range of unexplored temperature regimes (around 10-10^{3} TeV) with microlensing surveys searching for PBHs. Additionally, we discuss implications of these models for gravitational wave experiments. We show that a first-order QCD phase transition at around 7 TeV is consistent with the Subaru Hyper-Suprime Cam candidate event, while a transition of around 70 GeV is consistent with OGLE candidate events and could also account for the claimed NANOGrav gravitational wave signal.
Assuntos
Desenvolvimento Embrionário , Alimentos , Temperatura , Transição de Fase , FísicaRESUMO
In broad classes of inflationary models the period of accelerated expansion is followed by fragmentation of the inflaton scalar field into localized, long-lived, and massive oscillon excitations. We demonstrate that matter dominance of oscillons, followed by their rapid decay, significantly enhances the primordial gravitational wave (GW) spectrum. These oscillon-induced GWs, sourced by second-order perturbations, are distinct and could be orders of magnitude lower in frequency than the previously considered GWs associated with oscillon formation. We show that detectable oscillon-induced GW signatures establish direct tests independent from cosmic microwave background radiation for regions of parameter space of monodromy, and logarithmic and pure natural (plateau) potential classes of inflationary models, among others. We demonstrate that oscillon-induced GWs in a model based on pure natural inflation could be directly observable with the Einstein Telescope, Cosmic Explorer, and DECIGO. These signatures offer a new route for probing the underlying inflationary physics.
RESUMO
Magnetic monopoles have a long history of theoretical predictions and experimental searches, carrying direct implications for fundamental concepts such as electric charge quantization. We analyze in detail for the first time magnetic monopole production from collisions of cosmic rays bombarding the atmosphere. This source of monopoles is independent of cosmology, has been active throughout Earth's history, and supplies an irreducible monopole flux for all terrestrial experiments. Using results for robust atmospheric fixed target experiment flux of monopoles, we systematically establish direct comparisons of previous ambient monopole searches with monopole searches at particle colliders and set leading limits on magnetic monopole production in the â¼5-100 TeV mass range.
RESUMO
Solar-mass black holes with masses in the range of â¼1-2.5 M_{â} are not expected from conventional stellar evolution, but can be produced naturally via neutron star (NS) implosions induced by capture of small primordial black holes (PBHs) or from accumulation of some varieties of particle dark matter. We argue that a unique signature of such "transmuted" solar-mass BHs is that their mass distribution would follow that of the NSs. This would be distinct from the mass function of black holes in the solar-mass range predicted either by conventional stellar evolution or early Universe PBH production. We propose that analysis of the solar-mass BH population mass distribution in a narrow mass window of â¼1-2.5 M_{â} can provide a simple yet powerful test of the origin of these BHs. Recent LIGO/VIRGO gravitational wave (GW) observations of the binary merger events GW190425 and GW190814 are consistent with a BH mass in the range â¼1.5-2.6 M_{â}. Though these results have fueled speculation on dark matter-transmuted solar-mass BHs, we demonstrate that it is unlikely that the origin of these particular events stems from NS implosions. Data from upcoming GW observations will be able to distinguish between solar-mass BHs and NSs with high confidence. This capability will facilitate and enhance the efficacy of our proposed test.
RESUMO
Primordial black holes (PBHs) are a viable candidate for dark matter if the PBH masses are in the currently unconstrained "sublunar" mass range. We revisit the possibility that PBHs were produced by nucleation of false vacuum bubbles during inflation. We show that this scenario can produce a population of PBHs that simultaneously accounts for all dark matter, explains the candidate event in the Subaru Hyper Suprime-Cam (HSC) data, and contains both heavy black holes as observed by LIGO and very heavy seeds of supermassive black holes. We demonstrate with numerical studies that future observations of HSC, as well as other optical surveys, such as LSST, will be able to provide a definitive test for this generic PBH formation mechanism if it is the dominant source of dark matter.
RESUMO
Neutron-rich material ejected from neutron star-neutron star (NS-NS) and neutron star-black-hole (NS-BH) binary mergers is heated by nuclear processes to temperatures of a few hundred keV, resulting in a population of electron-positron pairs. Some of the positrons escape from the outer layers of the ejecta. We show that the population of low-energy positrons produced by NS-NS and NS-BH mergers in the Milky Way can account for the observed 511-keV line from the Galactic center (GC). Moreover, we suggest how positrons and the associated 511-keV emission can be used as tracers of recent mergers. Recent discovery of 511-keV emission from the ultrafaint dwarf galaxy Reticulum II, consistent with a rare NS-NS merger event, provides a smoking-gun signature of our proposal.
RESUMO
We show that some or all of the inventory of r-process nucleosynthesis can be produced in interactions of primordial black holes (PBHs) with neutron stars (NSs) if PBHs with masses 10^{-14} M_{â}