Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 611(7934): 99-104, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289329

RESUMO

Squamates (lizards and snakes) include more than 10,000 living species, descended from an ancestor that diverged more than 240 million years ago from that of their closest living relative, Sphenodon. However, a deficiency of fossil evidence1-7, combined with serious conflicts between molecular and morphological accounts of squamate phylogeny8-13 (but see ref. 14), has caused uncertainty about the origins and evolutionary assembly of squamate anatomy. Here we report the near-complete skeleton of a stem squamate, Bellairsia gracilis, from the Middle Jurassic epoch of Scotland, documented using high-resolution synchrotron phase-contrast tomography. Bellairsia shares numerous features of the crown group, including traits related to cranial kinesis (an important functional feature of many extant squamates) and those of the braincase and shoulder girdle. Alongside these derived traits, Bellairsia also retains inferred ancestral features including a pterygoid-vomer contact and the presence of both cervical and dorsal intercentra. Phylogenetic analyses return strong support for Bellairsia as a stem squamate, suggesting that several features that it shares with extant gekkotans are plesiomorphies, consistent with the molecular phylogenetic hypothesis that gekkotans are early-diverging squamates. We also provide confident support of stem squamate affinities for the enigmatic Oculudentavis. Our findings indicate that squamate-like functional features of the suspensorium, braincase and shoulder girdle preceded the origin of their palatal and vertebral traits and indicate the presence of advanced stem squamates as persistent components of terrestrial assemblages up to at least the middle of the Cretaceous period.


Assuntos
Fósseis , Lagartos , Serpentes , Síncrotrons , Tomografia , Animais , Lagartos/anatomia & histologia , Filogenia , Serpentes/anatomia & histologia
2.
Proc Natl Acad Sci U S A ; 117(43): 26861-26867, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046636

RESUMO

Synapsids are unique in having developed multirooted teeth and complex occlusions. These innovations evolved in at least two lineages of mammaliamorphs (Tritylodontidae and Mammaliaformes). Triassic fossils demonstrate that close to the origins of mammals, mammaliaform precursors were "experimenting" with tooth structure and function, resulting in novel patterns of occlusion. One of the most surprising examples of such adaptations is present in the haramiyidan clade, which differed from contemporary mammaliaforms in having two rows of cusps on molariform crowns adapted to omnivorous/herbivorous feeding. However, the origin of the multicusped tooth pattern present in haramiyidans has remained enigmatic. Here we describe the earliest-known mandibular fossil of a mammaliaform with double molariform roots and a crown with two rows of cusps from the Late Triassic of Greenland. The crown morphology is intermediate between that of morganucodontans and haramiyidans and suggests the derivation of the multicusped molariforms of haramiyidans from the triconodont molar pattern seen in morganucodontids. Although it is remarkably well documented in the fossil record, the significance of tooth root division in mammaliaforms remains enigmatic. The results of our biomechanical analyses (finite element analysis [FEA]) indicate that teeth with two roots can better withstand stronger mechanical stresses like those resulting from tooth occlusion, than teeth with a single root.


Assuntos
Evolução Biológica , Dentição , Fósseis , Mamíferos , Animais , Groenlândia
3.
J Anat ; 236(6): 1044-1100, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32003023

RESUMO

It is widely accepted that ornithodirans (bird lineage) and some pseudosuchians (crocodilian lineage) achieved fully erect limb posture in different ways. Ornithodirans have buttress-erected hindlimbs, while some advanced pseudosuchians have pillar-erected hindlimbs. Analysis of the musculoskeletal apparatus of the early dinosauriform Silesaurus opolensis challenges this view. This ornithodiran had pillar-erected hindlimbs like some pseudosuchians. This condition could be autapomorphic or represents a transitional state between adductor-controlled limb posture of early dinosauromorphs and the buttress-erected hindlimbs of dinosaurs. This sequence of changes is supported by Triassic tracks left by animals of the dinosaurian lineage. It was associated with the strong development of knee flexors and extensors. Furthermore, the forelimbs of Silesaurus were fully erect, analogously to those of early sauropods. Members of both lineages reduced the muscles related to the protraction, retraction and bending of the limb. They used forelimbs more as a body support and less for propulsion. A similar scapula and humerus construction can be found in the Lagerpetidae and Lewisuchus, suggesting that long, slender, fully erected forelimbs are primitive for all Dinosauromorpha, not just Silesauridae. Early dinosaurs redeveloped several muscle attachments on the forelimb, probably in relation to bipedality.


Assuntos
Dinossauros/anatomia & histologia , Membro Anterior/anatomia & histologia , Membro Posterior/anatomia & histologia , Locomoção/fisiologia , Músculo Esquelético/anatomia & histologia , Postura/fisiologia , Animais , Evolução Biológica , Membro Anterior/fisiologia , Fósseis , Membro Posterior/fisiologia , Músculo Esquelético/fisiologia , Filogenia
4.
R Soc Open Sci ; 6(3): 181042, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31031991

RESUMO

Diets of extinct animals can be difficult to analyse if no direct evidence, such as gut contents, is preserved in association with body fossils. Inclusions from coprolites (fossil faeces), however, may also reflect the diet of the host animal and become especially informative if the coprolite producer link can be established. Here we describe, based on propagation phase-contrast synchrotron microtomography (PPC-SRµCT), the contents of five morphologically similar coprolites collected from two fossil-bearing intervals from the highly fossiliferous Upper Triassic locality at Krasiejów in Silesia, Poland. Beetle remains, mostly elytra, and unidentified exoskeleton fragments of arthropods are the most conspicuous inclusions found in the coprolites. The abundance of these inclusions suggests that the coprolite producer deliberately targeted beetles and similar small terrestrial invertebrates as prey, but the relatively large size of the coprolites shows that it was not itself a small animal. The best candidate from the body fossil record of the locality is the dinosauriform Silesaurus opolensis Dzik, 2003, which had an anatomy in several ways similar to those of bird-like neotheropod dinosaurs and modern birds. We hypothesize that the beak-like jaws of S. opolensis were used to efficiently peck small insects off the ground, a feeding behaviour analogous to some extant birds.

5.
Sci Data ; 5: 180244, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398474

RESUMO

Understanding the origin and early evolution of squamates has been a considerable challenge given the extremely scarce fossil record of early squamates and their poor degree of preservation. In order to overcome those limitations, we conducted high-resolution X-ray computed tomography (CT) studies on the fossil reptile Megachirella wachtleri (Middle Triassic, northern Italy), which revealed an important set of features indicating this is the oldest known fossil squamate in the world, predating the previous oldest record by ca. 75 million years. We also compiled a new phylogenetic data set comprising a large sample of diapsid reptiles (including morphological and molecular data) to investigate the phylogenetic relationships of early squamates and other reptile groups along with the divergence time of those lineages. The re-description of Megachirella and a new phylogenetic hypothesis of diapsid relationships are presented in a separate study. Here we present the data descriptors for the tomographic scans of Megachirella, which holds fundamental information to our understanding on the early evolution of one of the largest vertebrate groups on Earth today.


Assuntos
Fósseis/diagnóstico por imagem , Répteis , Animais , Filogenia , Répteis/classificação , Répteis/genética , Microtomografia por Raio-X
6.
Nature ; 557(7707): 706-709, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29849156

RESUMO

Modern squamates (lizards, snakes and amphisbaenians) are the world's most diverse group of tetrapods along with birds 1 and have a long evolutionary history, with the oldest known fossils dating from the Middle Jurassic period-168 million years ago2-4. The evolutionary origin of squamates is contentious because of several issues: (1) a fossil gap of approximately 70 million years exists between the oldest known fossils and their estimated origin5-7; (2) limited sampling of squamates in reptile phylogenies; and (3) conflicts between morphological and molecular hypotheses regarding the origin of crown squamates6,8,9. Here we shed light on these problems by using high-resolution microfocus X-ray computed tomography data from the articulated fossil reptile Megachirella wachtleri (Middle Triassic period, Italian Alps 10 ). We also present a phylogenetic dataset, combining fossils and extant taxa, and morphological and molecular data. We analysed this dataset under different optimality criteria to assess diapsid reptile relationships and the origins of squamates. Our results re-shape the diapsid phylogeny and present evidence that M. wachtleri is the oldest known stem squamate. Megachirella is 75 million years older than the previously known oldest squamate fossils, partially filling the fossil gap in the origin of lizards, and indicates a more gradual acquisition of squamatan features in diapsid evolution than previously thought. For the first time, to our knowledge, morphological and molecular data are in agreement regarding early squamate evolution, with geckoes-and not iguanians-as the earliest crown clade squamates. Divergence time estimates using relaxed combined morphological and molecular clocks show that lepidosaurs and most other diapsids originated before the Permian/Triassic extinction event, indicating that the Triassic was a period of radiation, not origin, for several diapsid lineages.


Assuntos
Fósseis , Lagartos/classificação , Altitude , Animais , Teorema de Bayes , Itália , Lagartos/anatomia & histologia , Filogenia
7.
Int J Dev Biol ; 58(10-12): 949-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26154335

RESUMO

Numerous new discoveries and new research techniques have influenced our understanding of reptile development from a palaeontological perspective. They suggest for example that transition from mineralized to leathery eggshells and from oviparity to viviparity appeared much more often in the evolution of reptiles than was previously thought. Most marine reptiles evolved from viviparous terrestrial ancestors and had probably genetic sex determination. Fossil forms often display developmental traits absent or rare among modern ones such as polydactyly, hyperphalangy, the presence of ribcage armour, reduction of head ornamentation during ontogeny, extreme modifications of vertebral count or a wide range of feather-like structures. Thus, they provide an empirical background for many morphogenetic considerations.


Assuntos
Evolução Biológica , Fósseis , Óvulo/crescimento & desenvolvimento , Répteis/crescimento & desenvolvimento , Animais , Biologia do Desenvolvimento , Casca de Ovo/fisiologia , Feminino , Oviparidade/fisiologia , Processos de Determinação Sexual/fisiologia , Viviparidade não Mamífera/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA