Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Commun ; 14(1): 2770, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179392

RESUMO

Perceptual decisions are complete when a continuously updated score of sensory evidence reaches a threshold. In Drosophila, αß core Kenyon cells (αßc KCs) of the mushroom bodies integrate odor-evoked synaptic inputs to spike threshold at rates that parallel the speed of olfactory choices. Here we perform a causal test of the idea that the biophysical process of synaptic integration underlies the psychophysical process of bounded evidence accumulation in this system. Injections of single brief, EPSP-like depolarizations into the dendrites of αßc KCs during odor discrimination, using closed-loop control of a targeted opsin, accelerate decision times at a marginal cost of accuracy. Model comparisons favor a mechanism of temporal integration over extrema detection and suggest that the optogenetically evoked quanta are added to a growing total of sensory evidence, effectively lowering the decision bound. The subthreshold voltage dynamics of αßc KCs thus form an accumulator memory for sequential samples of information.


Assuntos
Odorantes , Olfato , Animais , Olfato/fisiologia , Drosophila/fisiologia , Corpos Pedunculados/fisiologia
2.
Nature ; 617(7962): 777-784, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100911

RESUMO

Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously 'modality-selective' KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience.


Assuntos
Encéfalo , Percepção de Cores , Drosophila melanogaster , Aprendizagem , Memória , Neurônios , Percepção Olfatória , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Dopamina/metabolismo , Aprendizagem/fisiologia , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Neurônios GABAérgicos/metabolismo , Neurônios Serotoninérgicos/metabolismo , Memória/fisiologia , Percepção Olfatória/fisiologia , Neurônios Dopaminérgicos/metabolismo , Inibição Neural , Percepção de Cores/fisiologia , Odorantes/análise
3.
Nature ; 568(7751): 230-234, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30894743

RESUMO

The essential but enigmatic functions of sleep1,2 must be reflected in molecular changes sensed by the brain's sleep-control systems. In the fruitfly Drosophila, about two dozen sleep-inducing neurons3 with projections to the dorsal fan-shaped body (dFB) adjust their electrical output to sleep need4, via the antagonistic regulation of two potassium conductances: the leak channel Sandman imposes silence during waking, whereas increased A-type currents through Shaker support tonic firing during sleep5. Here we show that oxidative byproducts of mitochondrial electron transport6,7 regulate the activity of dFB neurons through a nicotinamide adenine dinucleotide phosphate (NADPH) cofactor bound to the oxidoreductase domain8,9 of Shaker's KVß subunit, Hyperkinetic10,11. Sleep loss elevates mitochondrial reactive oxygen species in dFB neurons, which register this rise by converting Hyperkinetic to the NADP+-bound form. The oxidation of the cofactor slows the inactivation of the A-type current and boosts the frequency of action potentials, thereby promoting sleep. Energy metabolism, oxidative stress, and sleep-three processes implicated independently in lifespan, ageing, and degenerative disease6,12-14-are thus mechanistically connected. KVß substrates8,15,16 or inhibitors that alter the ratio of bound NADPH to NADP+ (and hence the record of sleep debt or waking time) represent prototypes of potential sleep-regulatory drugs.


Assuntos
Drosophila melanogaster/fisiologia , Mitocôndrias/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Subunidades Proteicas/metabolismo , Sono/fisiologia , Potenciais de Ação , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Transporte de Elétrons , Metabolismo Energético , Feminino , Proteínas Luminescentes/metabolismo , NADP/metabolismo , Neurônios/metabolismo , Optogenética , Oxirredução , Estresse Oxidativo , Oxirredutases/metabolismo , Subunidades Proteicas/química , Espécies Reativas de Oxigênio , Proteínas Recombinantes de Fusão/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Medicamentos Indutores do Sono , Fatores de Tempo
4.
Biomed Opt Express ; 9(10): 4961-4978, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319914

RESUMO

Autofluorescence spectroscopy is a promising label-free approach to characterize biological samples with demonstrated potential to report structural and biochemical alterations in tissues in a number of clinical applications. We report a characterization of the ex vivo autofluorescence fingerprint of cardiac tissue, exploiting a Langendorff-perfused isolated rat heart model to induce physiological insults to the heart, with a view to understanding how metabolic alterations affect the autofluorescence signals. Changes in the autofluorescence intensity and lifetime signatures associated with reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) were characterized during oxygen- or glucose-depletion protocols. Results suggest that both NAD(P)H and FAD autofluorescence intensity and lifetime parameters are sensitive to changes in the metabolic state of the heart owing to oxygen deprivation. We also observed changes in NAD(P)H fluorescence intensity and FAD lifetime parameter on reperfusion of oxygen, which might provide information on reperfusion injury, and permanent tissue damage or changes to the tissue during recovery from oxygen deprivation. We found that changes in the autofluorescence signature following glucose-depletion are, in general, less pronounced, and most clearly visible in NAD(P)H related parameters. Overall, the results reported in this investigation can serve as baseline for future investigations of cardiac tissue involving autofluorescence measurements.

5.
Neuron ; 97(2): 378-389.e4, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29307711

RESUMO

Sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila are integral to sleep homeostasis, but how these cells impose sleep on the organism is unknown. We report that dFB neurons communicate via inhibitory transmitters, including allatostatin-A (AstA), with interneurons connecting the superior arch with the ellipsoid body of the central complex. These "helicon cells" express the galanin receptor homolog AstA-R1, respond to visual input, gate locomotion, and are inhibited by AstA, suggesting that dFB neurons promote rest by suppressing visually guided movement. Sleep changes caused by enhanced or diminished allatostatinergic transmission from dFB neurons and by inhibition or optogenetic stimulation of helicon cells support this notion. Helicon cells provide excitation to R2 neurons of the ellipsoid body, whose activity-dependent plasticity signals rising sleep pressure to the dFB. By virtue of this autoregulatory loop, dFB-mediated inhibition interrupts processes that incur a sleep debt, allowing restorative sleep to rebalance the books. VIDEO ABSTRACT.


Assuntos
Drosophila melanogaster/fisiologia , Interneurônios/fisiologia , Sono/fisiologia , Animais , Encéfalo/fisiologia , Ritmo Circadiano , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Homeostase , Hormônios de Inseto/fisiologia , Luz , Locomoção/efeitos da radiação , Masculino , Potenciais da Membrana , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Optogenética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Visão Ocular
6.
Nature ; 536(7616): 333-337, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27487216

RESUMO

Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep. In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex. Artificial activation of these cells induces sleep, whereas reductions in excitability cause insomnia. dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent. Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states. Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab, and the upregulation of voltage-independent leak currents through a two-pore-domain potassium channel that we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus linked to the control of sleep-wake state.


Assuntos
Drosophila melanogaster/fisiologia , Homeostase , Sono/fisiologia , Animais , Membrana Celular/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Condutividade Elétrica , Feminino , Masculino , Neurotransmissores/metabolismo , Optogenética , Potássio/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Transporte Proteico , Receptores Dopaminérgicos/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Privação do Sono , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Fatores de Tempo , Vigília/fisiologia
7.
Neuron ; 90(5): 1086-99, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27210550

RESUMO

In Drosophila, negatively reinforcing dopaminergic neurons also provide the inhibitory control of satiety over appetitive memory expression. Here we show that aversive learning causes a persistent depression of the conditioned odor drive to two downstream feed-forward inhibitory GABAergic interneurons of the mushroom body, called MVP2, or mushroom body output neuron (MBON)-γ1pedc>α/ß. However, MVP2 neuron output is only essential for expression of short-term aversive memory. Stimulating MVP2 neurons preferentially inhibits the odor-evoked activity of avoidance-directing MBONs and odor-driven avoidance behavior, whereas their inhibition enhances odor avoidance. In contrast, odor-evoked activity of MVP2 neurons is elevated in hungry flies, and their feed-forward inhibition is required for expression of appetitive memory at all times. Moreover, imposing MVP2 activity promotes inappropriate appetitive memory expression in food-satiated flies. Aversive learning and appetitive motivation therefore toggle alternate modes of a common feed-forward inhibitory MVP2 pathway to promote conditioned odor avoidance or approach.


Assuntos
Comportamento Apetitivo/fisiologia , Aprendizagem da Esquiva/fisiologia , Drosophila melanogaster , Motivação/fisiologia , Corpos Pedunculados/fisiologia , Inibição Neural/fisiologia , Animais , Condicionamento Clássico/fisiologia , Ingestão de Alimentos/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Memória de Curto Prazo , Odorantes
8.
Neuron ; 89(6): 1237-1247, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26948892

RESUMO

Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses.


Assuntos
Colinérgicos/metabolismo , Memória/fisiologia , Corpos Pedunculados/citologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Cálcio/metabolismo , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Colinérgicos/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Neurônios/efeitos dos fármacos , Interferência de RNA/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
9.
J Fluoresc ; 25(5): 1169-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063535

RESUMO

A correction is proposed to the Delta function convolution method (DFCM) for fitting a multiexponential decay model to time-resolved fluorescence decay data using a monoexponential reference fluorophore. A theoretical analysis of the discretised DFCM multiexponential decay function shows the presence an extra exponential decay term with the same lifetime as the reference fluorophore that we denote as the residual reference component. This extra decay component arises as a result of the discretised convolution of one of the two terms in the modified model function required by the DFCM. The effect of the residual reference component becomes more pronounced when the fluorescence lifetime of the reference is longer than all of the individual components of the specimen under inspection and when the temporal sampling interval is not negligible compared to the quantity (τR (-1) - τ(-1))(-1), where τR and τ are the fluorescence lifetimes of the reference and the specimen respectively. It is shown that the unwanted residual reference component results in systematic errors when fitting simulated data and that these errors are not present when the proposed correction is applied. The correction is also verified using real data obtained from experiment.


Assuntos
Corantes Fluorescentes/química , Modelos Teóricos , Espectrometria de Fluorescência/normas , Análise dos Mínimos Quadrados , Dinâmica não Linear , Padrões de Referência
10.
Neuron ; 86(2): 417-27, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25864636

RESUMO

During olfactory learning in fruit flies, dopaminergic neurons assign value to odor representations in the mushroom body Kenyon cells. Here we identify a class of downstream glutamatergic mushroom body output neurons (MBONs) called M4/6, or MBON-ß2ß'2a, MBON-ß'2mp, and MBON-γ5ß'2a, whose dendritic fields overlap with dopaminergic neuron projections in the tips of the ß, ß', and γ lobes. This anatomy and their odor tuning suggests that M4/6 neurons pool odor-driven Kenyon cell synaptic outputs. Like that of mushroom body neurons, M4/6 output is required for expression of appetitive and aversive memory performance. Moreover, appetitive and aversive olfactory conditioning bidirectionally alters the relative odor-drive of M4ß' neurons (MBON-ß'2mp). Direct block of M4/6 neurons in naive flies mimics appetitive conditioning, being sufficient to convert odor-driven avoidance into approach, while optogenetically activating these neurons induces avoidance behavior. We therefore propose that drive to the M4/6 neurons reflects odor-directed behavioral choice.


Assuntos
Comportamento Apetitivo/fisiologia , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Corpos Pedunculados/inervação , Olfato/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Encéfalo/fisiologia , Proteínas de Drosophila/genética , Expressão Gênica , Neurônios/fisiologia , Fatores de Transcrição/genética
11.
Matrix Biol ; 32(1): 32-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23266527

RESUMO

Cartilage is a vital organ to maintain joint function. Upon arthritis, proteolytic enzymes initiate degradation of cartilage extracellular matrix (ECM) resulting in eventual loss of joint function. However, there are only limited ways of non-invasively monitoring early chemical changes in cartilage matrix. Here we report that the autofluorescence decay profiles of cartilage tissue are significantly affected by proteolytic degradation of cartilage ECM and can be characterised by measurements of the autofluorescence lifetime (AFL). A compact multidimensional fluorometer coupled to a fibre-optic probe was developed for single point measurements of AFL and applied to cartilage that was treated with different proteinases. Upon treating cartilage with bacterial collagenase, trypsin or matrix metalloproteinase 1, a significant dose and time dependent decrease of AFL was observed. Our data suggest that AFL of cartilage tissue is a potential non-invasive readout to monitor cartilage matrix integrity that may contribute to future diagnosis of cartilage defects as well as monitoring the efficacy of anti-joint therapeutic agents.


Assuntos
Biomarcadores/metabolismo , Cartilagem/fisiopatologia , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Imagem Óptica/métodos , Proteólise , Animais , Cartilagem/metabolismo , Bovinos , Colagenases , Matriz Extracelular/metabolismo , Fluorometria/métodos , Suínos , Tripsina
12.
Opt Express ; 19(15): 13848-61, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21934746

RESUMO

When performing multiphoton fluorescence lifetime imaging in multiple spectral emission channels, an instrument response function must be acquired in each channel if accurate measurements of complex fluorescence decays are to be performed. Although this can be achieved using the reference reconvolution technique, it is difficult to identify suitable fluorophores with a mono-exponential fluorescence decay across a broad emission spectrum. We present a solution to this problem by measuring the IRF using the ultrafast luminescence from gold nanorods. We show that ultrafast gold nanorod luminescence allows the IRF to be directly obtained in multiple spectral channels simultaneously across a wide spectral range. We validate this approach by presenting an analysis of multispectral autofluorescence FLIM data obtained from human skin ex vivo.


Assuntos
Ouro/química , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Luminescência , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Humanos , Técnicas In Vitro , Nanotubos , Espectrometria de Fluorescência , Fatores de Tempo
13.
Biophys J ; 95(10): L69-71, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18757561

RESUMO

We report what to our knowledge is a novel approach for simultaneous imaging of two different Förster resonance energy transfer (FRET) sensors in the same cell with minimal spectral cross talk. Previous methods based on spectral ratiometric imaging of the two FRET sensors have been limited by the availability of suitably bright acceptors for the second FRET pair and the spectral cross talk incurred when measuring in four spectral windows. In contrast to spectral ratiometric imaging, fluorescence lifetime imaging (FLIM) requires measurement of the donor fluorescence only and is independent of emission from the acceptor. By combining FLIM-FRET of the novel red-shifted TagRFP/mPlum FRET pair with spectral ratiometric imaging of an ECFP/Venus pair we were thus able to maximize the spectral separation between our chosen fluorophores while at the same time overcoming the low quantum yield of the far red acceptor mPlum. Using this technique, we could read out a TagRFP/mPlum intermolecular FRET sensor for reporting on small Ras GTP-ase activation in live cells after epidermal growth factor stimulation and an ECFP/Venus Cameleon FRET sensor for monitoring calcium transients within the same cells. The combination of spectral ratiometric imaging of ECFP/Venus and high-speed FLIM-FRET of TagRFP/mPlum can thus increase the spectral bandwidth available and provide robust imaging of multiple FRET sensors within the same cell. Furthermore, since FLIM does not require equal stoichiometries of donor and acceptor, this approach can be used to report on both unimolecular FRET biosensors and protein-protein interactions with the same cell.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Transferência Ressonante de Energia de Fluorescência/instrumentação , Mapeamento de Interação de Proteínas/instrumentação , Transdução de Sinais/fisiologia , Animais , Células COS , Chlorocebus aethiops , Desenho de Equipamento , Análise de Falha de Equipamento , Transferência Ressonante de Energia de Fluorescência/métodos , Mapeamento de Interação de Proteínas/métodos
14.
Opt Lett ; 33(16): 1887-9, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18709122

RESUMO

Fluorescence lifetime imaging (FLIM) is used to quantitatively map the concentration of a small molecule in three dimensions in a microfluidic mixing device. The resulting experimental data are compared with computational fluid-dynamics (CFD) simulations. A line-scanning semiconfocal FLIM microscope allows the full mixing profile to be imaged in a single scan with submicrometer resolution over an arbitrary channel length from the point of confluence. Following experimental and CFD optimization, mixing times down to 1.3+/-0.4 ms were achieved with the single-layer microfluidic device.


Assuntos
Microfluídica , Microscopia de Fluorescência/métodos , Calibragem , Desenho de Equipamento , Fluorescência , Imageamento Tridimensional , Cinética , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia de Fluorescência/instrumentação , Fatores de Tempo
15.
J Biophotonics ; 1(5): 390-4, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19343662

RESUMO

We describe a quantitative fluorescence projection tomography technique which measures the 3-D fluorescence lifetime distribution in optically cleared specimens up 1 cm in diameter. This is achieved by acquiring a series of wide-field time-gated images at different relative time delays with respect to a train of excitation pulses, at a number of projection angles. For each time delay, the 3-D time-gated intensity distribution is reconstructed using a filtered back projection algorithm and the fluorescence lifetime subsequently determined for each reconstructed horizontal plane by iterative fitting to a mono-exponential decay. Due to its inherently ratiometric nature, fluorescence lifetime is robust against intensity based artefacts as well as producing a quantitative measure of the fluorescence signal. We present a 3-D fluorescence lifetime reconstruction of a mouse embryo labelled with an alexa-488 conjugated antibody targeted to the neurofilament, which clearly differentiates between the extrinsic label and the autofluorescence, particularly from the heart and dorsal aorta.


Assuntos
Tomografia Óptica/métodos , Animais , Embrião de Mamíferos/ultraestrutura , Fluorescência , Corantes Fluorescentes , Imageamento Tridimensional/métodos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência
16.
J Biophotonics ; 1(6): 514-21, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19343677

RESUMO

We report an automated optically sectioning fluorescence lifetime imaging (FLIM) multiwell plate reader for high content analysis (HCA) in drug discovery and accelerated research in cell biology. The system utilizes a Nipkow disc confocal microscope and performs unsupervised FLIM with autofocus, automatic setting of acquisition parameters and automated localisation of cells in the field of view. We demonstrate its applications to test dye solutions, fixed and live cells and FLIM-FRET.


Assuntos
Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência/instrumentação , Corantes Fluorescentes , Humanos , Mapeamento de Interação de Proteínas/instrumentação
17.
Opt Lett ; 32(23): 3408-10, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18059949

RESUMO

We present a time-gated, optically sectioned, hyperspectral fluorescence lifetime imaging (FLIM) microscope incorporating a tunable supercontinuum excitation source extending into the UV. The system is capable of resolving the excitation spectrum, emission spectrum, and fluorescence decays in an optically sectioned image.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Animais , Colágeno/química , Colágeno/ultraestrutura , Convallaria/citologia , Processamento de Imagem Assistida por Computador/instrumentação , Microscopia de Fluorescência/instrumentação , Microscopia Ultravioleta/instrumentação , Microscopia Ultravioleta/métodos , Ratos , Cauda/citologia
18.
Microsc Res Tech ; 70(5): 481-4, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17366615

RESUMO

We report a rapid hyperspectral fluorescence lifetime imaging (FLIM) instrument that exploits high-speed FLIM technology in a line-scanning microscope. We demonstrate the acquisition of whole-field optically sectioned hyperspectral fluorescence lifetime image stacks (with 32 spectral bins) in less than 40 s and illustrate its application to unstained biological tissue.


Assuntos
Diagnóstico por Imagem/métodos , Microscopia de Fluorescência/métodos , Artérias/química , Artérias/ultraestrutura , Convallaria/química , Convallaria/ultraestrutura , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA