Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Catal Sci Technol ; 14(11): 3029-3040, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38841155

RESUMO

This work employs ambient pressure X-ray photoelectron spectroscopy (APXPS) to delve into the atomic and electronic transformations of a core-shell Ni@NiO/NiCO3 photocatalyst - a model system for visible light active plasmonic photocatalysts used in water splitting for hydrogen production. This catalyst exhibits reversible structural and electronic changes in response to water vapor and solar simulator light. In this study, APXPS spectra were obtained under a 1 millibar water vapor pressure, employing a solar simulator with an AM 1.5 filter to measure spectral data under visible light illumination. The in situ APXPS spectra indicate that the metallic Ni core absorbs the light, exciting plasmons, and creates hot electrons that are subsequently utilized through hot electron injection in the hydrogen evolution reaction (HER) by NiCO3. Additionally, the data show that NiO undergoes reversible oxidation to NiOOH in the presence of water vapor and light. The present work also investigates the contribution of carbonate and its involvement in the photocatalytic reaction mechanism, shedding light on this seldom-explored aspect of photocatalysis. The APXPS results highlight the photochemical reduction of carbonates into -COOH, contributing to the deactivation of the photocatalyst. This work demonstrates the APXPS efficacy in examining photochemical reactions, charge transfer dynamics and intermediates in potential photocatalysts under near realistic conditions.

2.
Mater Adv ; 5(7): 2968-2973, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38572482

RESUMO

Metal carbonate hydroxides have emerged as novel and promising candidates for water splitting due to their good electrochemical properties and eco-friendly features. In this study, the hierarchical mesoporous structure of nickel carbonate hydroxide hydrate (Ni2(CO3)(OH)2·4H2O) was synthesized by a one-pot facile hydrothermal method. It demonstrated photocatalytic properties for the first time, exhibiting a hydrogen evolution reaction yield of 10 µmol g-1 h-1 under white light irradiation with a nominal power of 0.495 W. This facile synthesis strategy and the good photocatalytic properties indicate that nickel carbonate hydroxide is a promising material for application in photocatalytic hydrogen evolution.

3.
Nanoscale Adv ; 5(24): 6935-6943, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059036

RESUMO

Visible light-active nickel-based plasmonic photocatalysts provide a cost-effective alternative to noble metals. However, their rarity, fragility, and limited understanding pose challenges. This work presents a microwave-assisted organic synthesis of a Ni-NiO@Ni2CO3(OH)2 core-shell@sheet plasmonic photocatalyst. By employing time and power dependent synthesis, this catalyst exhibits flexible Ni2CO3(OH)2 nanosheets enveloping the Ni-NiO structure, surpassing the pristine Ni@NiO/NiCO3 core-shell counterpart. Chemical reaction mechanisms suggest that irradiation of pristine Ni-NiO/NiCO3 nano structures leads to breakage of amorphous NiCO3 to Ni2+ and CO32-, which further, in the presence of water solvent, interacts with OH- ions leading to the formation of Ni(CO3)·Ni(OH)2. With enhanced light absorption and photocatalytic properties, the resulting core-shell@sheet photocatalyst demonstrates double the hydrogen evolution reaction yield (40 µmol g-1 h-1) compared to the pristine catalyst (20 µmol g-1 h-1). The enhanced H2 yield is attributed to the flexible sheets, cross-dimensional photocatalyst structure, increased surface area for surface reactions, and higher H2 activity of Ni2CO3(OH)2. This research showcases the potential of microwave-assisted synthesis in developing flexible nanosheets with superior solar water splitting performance.

4.
J Mater Chem A Mater ; 9(17): 10527-10545, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33996094

RESUMO

Dye-sensitized solar cells (DSSCs) are an efficient photovoltaic technology for powering electronic applications such as wireless sensors with indoor light. Their low cost and abundant materials, as well as their capability to be manufactured as thin and light-weight flexible solar modules highlight their potential for economic indoor photovoltaics. However, their fabrication methods must be scaled to industrial manufacturing with high photovoltaic efficiency and performance stability under typical indoor conditions. This paper reviews the recent progress in DSSC research towards this goal through the development of new device structures, alternative redox shuttles, solid-state hole conductors, TiO2 photoelectrodes, catalyst materials, and sealing techniques. We discuss how each functional component of a DSSC has been improved with these new materials and fabrication techniques. In addition, we propose a scalable cell fabrication process that integrates these developments to a new monolithic cell design based on several features including inkjet and screen printing of the dye, a solid state hole conductor, PEDOT contact, compact TiO2, mesoporous TiO2, carbon nanotubes counter electrode, epoxy encapsulation layers and silver conductors. Finally, we discuss the need to design new stability testing protocols to assess the probable deployment of DSSCs in portable electronics and internet-of-things devices.

5.
RSC Adv ; 11(5): 2733-2743, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424227

RESUMO

Ni@NiO/NiCO3 core-shell nanostructures have been investigated for surface plasmon driven photocatalytic solar H2 generation without any co-catalyst. Huge variation in the photocatalytic activity has been observed in the pristine vs. post-vacuum annealed samples with the maximum H2 yield (∼110 µmol g-1 h-1) for the vacuum annealed sample (N70-100/2 h) compared to ∼92 µmol g-1 h-1 for the pristine (N70) photocatalyst. Thorough structural (X-ray diffraction) and spectroscopic (X-ray photoelectron spectroscopy and transmission electron microscopy coupled electron energy loss spectroscopy) investigations reveal the core Ni nanoparticle decorated with the shell, a composite of crystalline NiO and amorphous NiCO3. Significant visible light absorption at ∼475 nm in the UV-vis region along with the absence of a peak/edge corresponding to NiO suggest the role of surface plasmons in the observed catalytic activity. As per the proposed mechanism, amorphous NiCO3 in the shell has been suggested to serve as the dielectric medium/interface, which enhances the surface plasmon resonance and boosts the HER activity.

6.
Nanoscale ; 12(46): 23461-23479, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211053

RESUMO

Though solar energy availability is predicted for centuries, the diurnal and asymmetrical nature of the sun across the globe presents significant challenges in terms of harvesting sunlight. Photo/electro-catalysis, currently believed to be the bottleneck, promises a potential solution to these challenges along with a green and sustainable environment. This review aims to provide the current highlights on the application of inorganic-semiconductor-based ternary nanocomposites for H2 production and pollutant removal. Various engineering strategies employing integration of 2D materials, 1D nanorods, and/or 0D nanoparticles with inorganic semiconductors to create multiple nano-junctions have been developed for the excellent photocatalytic activity. Following a succinct description of the latest progress in photocatalysts, a discussion on the importance of ternary electrocatalysts in the field of next-generation supercapacitors has been included. Finally, the authors' perspectives are considered briefly, including future developments and critical technical challenges in the ever-growing field of photo/electro-catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA