Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Aquat Toxicol ; 272: 106944, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823071

RESUMO

Microplastic (MP) pollution has engulfed global aquatic systems, and the concerns about microplastic translocation and bioaccumulation in fish and other aquatic organisms are now an unpleasant truth. In the past few years, MP pollution in freshwater systems, particularly rivers and subsequently in freshwater organisms, especially in fish, has caught the attention of researchers. Rivers provide livelihood to approximately 40 % of the global population through food and potable water. Hence, assessment of emerging contaminants like microplastics in rivers and the associated fauna is crucial. This study assessed microplastics (MPs) in fish, sediment and freshwater samples across the third largest riverine system of peninsular India, the Mahanadi River. The number concentrations of MPs measured in water, sediment and fish ranged from 337.5 ± 54.4-1333.3 ± 557.2 MPs/m3, 14.7 ± 3.7-69.3 ± 10.1 MPs/kg. Dry weight and 0.4-3.2 MPs/Fish, respectively. Surprisingly, MPs were found in every second fish sample, with a higher MP number in the gut than in the gills. Black and blue coloured filaments with <0.5 mm size were the dominant MPs with polypropylene and polyethylene polymers in abundance. The Polymer Hazard Index (PHI) and the Potential Ecological Risk Index (PERI) studies revealed that the majority of the sampling sites fell in Risk category V (dangerous category). An irregular trend in the MP concentration was observed downstream of the river, though relatively elevated MP concentrations in water and fish samples were observed downstream of the river. t-Distributed Stochastic Neighbour Embedding (t-SNE) unveiled distinct patterns in MP distribution with a higher similarity exhibited in the MPs found in fish gill and gut samples, unlike water and sediment, which shared certain characteristics. The findings in the current study contribute to filling the knowledge gap of MP assessment and accumulation in global freshwater systems and highlight the microplastic contamination and accumulation in fish with its potential implications on human health.


Assuntos
Monitoramento Ambiental , Peixes , Microplásticos , Rios , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Animais , Rios/química , Índia , Medição de Risco , Peixes/metabolismo , Sedimentos Geológicos/química , Bioacumulação , Brânquias/metabolismo , Brânquias/química
2.
Aquat Toxicol ; 268: 106838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295601

RESUMO

While the toxicity of nano-microplastics and polycyclic aromatic hydrocarbons (PAHs) to aquatic organisms is well-studied, their joint impact on microalgae is less explored. This study focused on single and combined effects of PS-NPs (30 nm; concentrations: 2, 5, 10, and 25 mg/L) and two PAHs (chrysene and fluoranthene at 10, 100 µg/L) for 96 h on the accumulation, growth, photosynthetic parameters, and oxidative stress in the Chlamydomonas reinhardtii. The findings revealed that exposure to increasing concentrations of PS-NPs significantly reduced the growth inhibition ratio and chlorophyll-a content after 96 h. Both PAHs (100 µg/L) + PS-NPs (25 mg/L), significantly reduced the growth inhibition ratio and chlorophyll-a levels. Individual and combined exposures of PS-NPs and PAHs can prompt antioxidant responses like SOD, GPx, and GST, as well as an unaffected level of non-enzymatic antioxidant GSH and diminished CAT activity. Furthermore, both PAHs + PS-NPs triggered ROS levels, resulting in cell membrane damage. However, the reduced oxidative effect of LPO of combined exposures can be attributed to the activation of antioxidant defenses. In addition, the microscopic visualization data shows that PS-NPs adhered to the surface of microalgae. Also, PS-NPs reduced the adsorption of PAHs on the surface of C. reinhardtii. Altogether, this study implied that the influence of coexistent PS-NPs should be considered in the environmental risk assessment of PAHs in aquatic environments.


Assuntos
Chlamydomonas reinhardtii , Fluorenos , Microalgas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poliestirenos/toxicidade , Microplásticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Chlamydomonas reinhardtii/metabolismo , Antioxidantes/farmacologia , Crisenos , Poluentes Químicos da Água/toxicidade , Clorofila/metabolismo , Clorofila A
3.
Mar Pollut Bull ; 194(Pt B): 115265, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453167

RESUMO

In this study, for the first time, we evaluated microplastic contamination in water, beach sand, and fish samples collected from the seven most famous and crowded beaches of the eastern coast of India, which cover around 1200 km. The average number of microplastics found was 80 ± 33 microplastics/m3 and 4 ± 2 microplastics/kg dry weight with a numerical abundance of polyethylene and polystyrene for water and sand samples, respectively. The polymer hazard index score, which represents the severity of the microplastics scenario in the studied locations, depicts that this coastline falls under hazard levels IV and V (most hazardous) for water and sand samples, respectively. The study revealed that approximately 30 % of the commercially important fishes collected from the locations contained microplastics with polyethylene terephthalate and polypropylene being the most abundant types. Rastrelliger kanagurta and Sardinella gibbosa were identified as the most polluted species.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos , Areia , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peixes , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA