Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(36): 12607-14, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25143132

RESUMO

Many biological processes require precise regulation and synergy of proteins, and consequently involve molecular recognition and spatial constraints between biomolecules. Here, a library of poly(N-isopropylacrylamide-co-tris-nitrilotriacetic acid acrylamide) (PNTs) has been synthesized and complexed with Cu(2+) in order to serve as models for investigation of the combined effects of molecular recognition and spatial constraints in biomolecular interactions. The average distance between Cu(2+)-trisNTA binding sites in PNTs polymers was varied from 4.3 to 31.5 nm by adjusting their trisNTA contents. His tag (His6), His-tagged enhanced yellow fluorescent protein (His6-eYFP), and His6-tagged collagenase G (His6-ColG), with sizes ranging from 1 to 11 nm, were used as models to assess whether the binding ability is influenced by a cooperative topology based on molecular recognition interactions with Cu(2+)-trisNTA binding sites, and spatial constraints created by decreasing average distance between trisNTAs. His-tagged molecules bound to all PNTs polymers due to their molecular recognition interaction involving histidines and Cu(2+)-trisNTA pockets, but with a binding ability that was highly modulated by the average distance between the trisNTA binding sites. Small molecular mass molecules (His6) exhibit a high binding ability to all PNTs polymers, whereas his-tagged proteins bind to PNTs efficiently only when the average distance between trisNTA binding sites is larger than the protein dimensions.


Assuntos
Resinas Acrílicas/química , Colagenases/química , Proteínas Luminescentes/química , Resinas Acrílicas/síntese química , Colagenases/metabolismo , Cobre/química , Histidina/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA